# AUTOGENERATED! DO NOT EDIT! File to edit: ../drive/MyDrive/Colab Notebooks/room classifier to app.ipynb. # %% auto 0 __all__ = ['learner', 'image', 'label', 'examples', 'intf', 'classify_image'] # %% ../drive/MyDrive/Colab Notebooks/room classifier to app.ipynb 2 import platform import fastbook import fastai from fastai.vision.widgets import * from fastai.callback.preds import load_learner from fastai.vision.all import * fastbook.setup_book() # %% ../drive/MyDrive/Colab Notebooks/room classifier to app.ipynb 3 if platform.system().lower() == "windows": import pathlib posix_path = pathlib.PosixPath pathlib.PosixPath = pathlib.WindowsPath learner = load_learner("room_classifier.pk1") if platform.system().lower() == "windows": pathlib.PosixPath = posix_path # %% ../drive/MyDrive/Colab Notebooks/room classifier to app.ipynb 14 def classify_image(img): pred, idx, probs = learner.predict(img) return dict(zip(learner.dls.vocab, map(float, probs))) # %% ../drive/MyDrive/Colab Notebooks/room classifier to app.ipynb 16 import gradio as gr image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() out_pl = widgets.Output() examples = ["examples/test_bathroom.jfif", "examples/test_living_room.jfif", "examples/test_building.jfif"] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch()