Spaces:
Runtime error
Runtime error
Ubuntu
commited on
Commit
·
ec94c75
1
Parent(s):
8e8918c
init
Browse files- .ipynb_checkpoints/app-checkpoint.py +134 -0
- app.py +1 -1
.ipynb_checkpoints/app-checkpoint.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
from encoded_video import EncodedVideo, write_video
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from torchvision.datasets import ImageFolder
|
8 |
+
from transformers import ViTFeatureExtractor, ViTForImageClassification, AutoFeatureExtractor, ViTMSNForImageClassification
|
9 |
+
from pathlib import Path
|
10 |
+
import pytorch_lightning as pl
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
+
from torchmetrics import Accuracy
|
13 |
+
|
14 |
+
def video_identity(video,user_name,class_name,trainortest,ready):
|
15 |
+
if ready=='yes':
|
16 |
+
|
17 |
+
data_dir = Path(str(user_name)+'/train')
|
18 |
+
train_ds = ImageFolder(data_dir)
|
19 |
+
|
20 |
+
|
21 |
+
test_dir = Path(str(user_name)+'/test')
|
22 |
+
test_ds = ImageFolder(test_dir)
|
23 |
+
|
24 |
+
label2id = {}
|
25 |
+
id2label = {}
|
26 |
+
|
27 |
+
for i, class_name in enumerate(train_ds.classes):
|
28 |
+
label2id[class_name] = str(i)
|
29 |
+
id2label[str(i)] = class_name
|
30 |
+
|
31 |
+
class ImageClassificationCollator:
|
32 |
+
def __init__(self, feature_extractor):
|
33 |
+
self.feature_extractor = feature_extractor
|
34 |
+
|
35 |
+
def __call__(self, batch):
|
36 |
+
encodings = self.feature_extractor([x[0] for x in batch], return_tensors='pt')
|
37 |
+
encodings['labels'] = torch.tensor([x[1] for x in batch], dtype=torch.long)
|
38 |
+
return encodings
|
39 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
40 |
+
model = ViTForImageClassification.from_pretrained(
|
41 |
+
'google/vit-base-patch16-224-in21k',
|
42 |
+
num_labels=len(label2id),
|
43 |
+
label2id=label2id,
|
44 |
+
id2label=id2label
|
45 |
+
)
|
46 |
+
collator = ImageClassificationCollator(feature_extractor)
|
47 |
+
class Classifier(pl.LightningModule):
|
48 |
+
|
49 |
+
def __init__(self, model, lr: float = 2e-5, **kwargs):
|
50 |
+
super().__init__()
|
51 |
+
self.save_hyperparameters('lr', *list(kwargs))
|
52 |
+
self.model = model
|
53 |
+
self.forward = self.model.forward
|
54 |
+
self.val_acc = Accuracy(
|
55 |
+
task='multiclass' if model.config.num_labels > 2 else 'binary',
|
56 |
+
num_classes=model.config.num_labels
|
57 |
+
)
|
58 |
+
|
59 |
+
def training_step(self, batch, batch_idx):
|
60 |
+
outputs = self(**batch)
|
61 |
+
self.log(f"train_loss", outputs.loss)
|
62 |
+
return outputs.loss
|
63 |
+
|
64 |
+
def validation_step(self, batch, batch_idx):
|
65 |
+
outputs = self(**batch)
|
66 |
+
self.log(f"val_loss", outputs.loss)
|
67 |
+
acc = self.val_acc(outputs.logits.argmax(1), batch['labels'])
|
68 |
+
self.log(f"val_acc", acc, prog_bar=True)
|
69 |
+
return outputs.loss
|
70 |
+
|
71 |
+
def configure_optimizers(self):
|
72 |
+
return torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
train_loader = DataLoader(train_ds, batch_size=8, collate_fn=collator, num_workers=8, shuffle=True)
|
77 |
+
test_loader = DataLoader(test_ds, batch_size=8, collate_fn=collator, num_workers=2)
|
78 |
+
|
79 |
+
|
80 |
+
for name, param in model.named_parameters():
|
81 |
+
param.requires_grad = False
|
82 |
+
if name.startswith("classifier"): # choose whatever you like here
|
83 |
+
param.requires_grad = True
|
84 |
+
|
85 |
+
pl.seed_everything(42)
|
86 |
+
classifier = Classifier(model, lr=2e-5)
|
87 |
+
trainer = pl.Trainer(accelerator='gpu', devices=1, precision=16, max_epochs=3)
|
88 |
+
|
89 |
+
trainer.fit(classifier, train_loader, test_loader)
|
90 |
+
|
91 |
+
for batch_idx, data in enumerate(test_loader):
|
92 |
+
outputs = model(**data)
|
93 |
+
img=data['pixel_values'][0][0]
|
94 |
+
preds=str(outputs.logits.softmax(1).argmax(1))
|
95 |
+
labels=str(data['labels'])
|
96 |
+
|
97 |
+
return img, preds, labels
|
98 |
+
|
99 |
+
else:
|
100 |
+
capture = cv2.VideoCapture(video)
|
101 |
+
|
102 |
+
user_d=str(user_name)+'/'+str(trainortest)
|
103 |
+
class_d=str(user_name)+'/'+str(trainortest)+'/'+str(class_name)
|
104 |
+
if not os.path.exists(user_d):
|
105 |
+
os.makedirs(user_d)
|
106 |
+
if not os.path.exists(class_d):
|
107 |
+
os.makedirs(class_d)
|
108 |
+
frameNr = 0
|
109 |
+
while (True):
|
110 |
+
|
111 |
+
success, frame = capture.read()
|
112 |
+
|
113 |
+
if success:
|
114 |
+
cv2.imwrite(f'{class_d}/frame_{frameNr}.jpg', frame)
|
115 |
+
|
116 |
+
else:
|
117 |
+
break
|
118 |
+
|
119 |
+
frameNr = frameNr+10
|
120 |
+
|
121 |
+
img=cv2.imread(class_d+'/frame_0.jpg')
|
122 |
+
|
123 |
+
return img, trainortest, class_d
|
124 |
+
demo = gr.Interface(video_identity,
|
125 |
+
inputs=[gr.Video(source='upload'),
|
126 |
+
gr.Text(),
|
127 |
+
gr.Text(),
|
128 |
+
gr.Text(label='Which set is this? (type train or test)'),
|
129 |
+
gr.Text(label='Are you ready? (type yes or no)')],
|
130 |
+
outputs=[gr.Image(),
|
131 |
+
gr.Text(),
|
132 |
+
gr.Text()],
|
133 |
+
cache_examples=True)
|
134 |
+
demo.launch(debug=True)
|
app.py
CHANGED
@@ -84,7 +84,7 @@ def video_identity(video,user_name,class_name,trainortest,ready):
|
|
84 |
|
85 |
pl.seed_everything(42)
|
86 |
classifier = Classifier(model, lr=2e-5)
|
87 |
-
trainer = pl.Trainer(accelerator='
|
88 |
|
89 |
trainer.fit(classifier, train_loader, test_loader)
|
90 |
|
|
|
84 |
|
85 |
pl.seed_everything(42)
|
86 |
classifier = Classifier(model, lr=2e-5)
|
87 |
+
trainer = pl.Trainer(accelerator='gpu', devices=1, precision=16, max_epochs=3)
|
88 |
|
89 |
trainer.fit(classifier, train_loader, test_loader)
|
90 |
|