from warnings import filterwarnings filterwarnings('ignore') import pandas as pd import joblib from sklearn.datasets import fetch_openml from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score # Read data data_df = pd.read_csv('insurance.csv') data_df = data_df.drop(columns='index') target = 'charges' numeric_features = ['age', 'bmi', 'children'] categorical_features = ['sex', 'smoker', 'region'] print("Creating data subsets...") # Split the data into features and target X = data_df.drop(target, axis=1) y = data_df[target] print('Splitting data into train and test...') # Split the independent and dependent features into x and y variables with a test size 0.2% and random at 42 Xtrain, Xtest, ytrain, ytest = train_test_split( X, y, test_size=0.2, random_state=42 ) print("Creating model pipeline...") # Features to scale and encode preprocessor = make_column_transformer( (StandardScaler(), numeric_features), (OneHotEncoder(handle_unknown='ignore'), categorical_features) ) model_linear_regression = LinearRegression(n_jobs=-1) model_pipeline = make_pipeline( preprocessor, model_linear_regression ) print("Estimating Model Pipeline...") model_pipeline.fit(Xtrain, ytrain) print('Model evaluation:') # print RMSE print(f" RMSE: {mean_squared_error(ytest, model_pipeline.predict(Xtest), squared=False)}") # print R2 score print(f" R2: {r2_score(ytest, model_pipeline.predict(Xtest))}") # Serialize the model print("Serializing Model...") saved_model_path = "model.joblib" joblib.dump(model_pipeline, saved_model_path) print('done!')