File size: 4,481 Bytes
e75a48e
7ba7074
 
 
 
 
 
d52d7a5
7ba7074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfa8bc0
83eb289
7ba7074
 
 
 
dfa8bc0
 
7ba7074
 
dfa8bc0
f961b92
7ba7074
 
f514d7f
998ddcc
 
 
d52d7a5
7ba7074
ee053e6
515fbbc
ee053e6
 
 
2ceea22
18945cc
6f14589
1db9cdd
98cf158
7af5cb9
 
6f14589
f514d7f
98cf158
 
6f14589
ece39d2
 
7af5cb9
ece39d2
 
1db9cdd
7af5cb9
 
ece39d2
 
7af5cb9
ece39d2
 
1db9cdd
7af5cb9
 
ece39d2
 
7af5cb9
ece39d2
 
1db9cdd
7af5cb9
 
 
 
b7f426c
7af5cb9
2ceea22
1db9cdd
7af5cb9
 
2ceea22
 
b7f426c
2ceea22
 
1db9cdd
7af5cb9
 
2ceea22
 
b7f426c
2ceea22
 
1db9cdd
7af5cb9
 
2ceea22
 
b7f426c
2ceea22
 
7ba7074
ece39d2
 
 
 
 
 
d52d7a5
477fa16
ee053e6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

from warnings import filterwarnings
filterwarnings('ignore')

import os
import uuid
import json
import gradio as gr
import pandas as pd
from huggingface_hub import CommitScheduler
from pathlib import Path

# Configure the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent

repo_id = "operand-logs"

# Create a commit scheduler
scheduler = CommitScheduler(
    repo_id=repo_id,
    repo_type="dataset",
    folder_path=log_folder,
    path_in_repo="data",
    every=2
)

def dprocess(command, ddddd):
    print('foo...')
    with scheduler.lock:
        with log_file.open("a") as f:
            f.write(json.dumps(
                {
                    'p1': 'foo',
                    'p2': 100
                }
            ))
            f.write("\n")
    return 42

# Set-up the Gradio UI
#textbox = gr.Textbox(label='Command')
# company = gr.Radio(label='Company:',
#                    choices=["aws", "google", "IBM", "Meta", "msft"],
#                    value="aws")

# Create Gradio interface
# Set-up the Gradio UI

# Create Gradio interface with tabs
with gr.Blocks(theme=gr.themes.Soft()) as operand:
    
    gr.Markdown("# operand")
    gr.Markdown("Data Studio<br><br>")

    with gr.Tab("Data Sources"):
        
        gr.Markdown("## Data Sources")
        gr.Markdown("Instances of data sources e.g., Jira Cloud endpoint")

        with gr.Accordion("Guide"):
            gr.Markdown("data_source my-ds-name my-ds-desc my-jira-endpoint, my-jira-creds)
            gr.Markdown("data_source my-ds-name my-ds-desc my-jira-endpoint, my-jira-creds)
        
        textbox_a = gr.Textbox(label='Command A')
        output_a = gr.Textbox(label='Output A')
        button_a = gr.Button("Submit")
        button_a.click(dprocess, inputs=[textbox_a], outputs=output_a)
    
    with gr.Tab("Data Sets"):
        gr.Markdown("## Data Set")
        gr.Markdown("A data set from a data source.")
        textbox_b = gr.Textbox(label='Command B')
        output_b = gr.Textbox(label='Output B')
        button_b = gr.Button("Submit")
        button_b.click(dprocess, inputs=[textbox_b], outputs=output_b)
    
    with gr.Tab("Data Transforms"):
        gr.Markdown("## Data Transform")
        gr.Markdown("A transformation of a data set into a new data set.")
        textbox_c = gr.Textbox(label='Command C')
        output_c = gr.Textbox(label='Output C')
        button_c = gr.Button("Submit")
        button_c.click(dprocess, inputs=[textbox_c], outputs=output_c)

    with gr.Tab("Data Analyses"):
        gr.Markdown("## Data Analysis")
        gr.Markdown("Statistical analysis of a data set e.g., slope calculation on feature")
        textbox_d = gr.Textbox(label='Command C')
        output_d = gr.Textbox(label='Output C')
        button_d = gr.Button("Submit")
        button_d.click(dprocess, inputs=[textbox_d], outputs=output_d)

    with gr.Tab("Data Visualizations"):
        gr.Markdown("## Data Visualization")
        gr.Markdown("A visual insight from a data set or data analysis results e.g., matplotlib, sns, plotly")
        textbox_c = gr.Textbox(label='Command C')
        output_c = gr.Textbox(label='Output C')
        button_c = gr.Button("Submit")
        button_c.click(dprocess, inputs=[textbox_c], outputs=output_c)

    with gr.Tab("Notifications"):
        gr.Markdown("## Notifications")
        gr.Markdown("Scheduled transmission of data set, data analysis or data visualization direct to user device")
        textbox_c = gr.Textbox(label='Command C')
        output_c = gr.Textbox(label='Output C')
        button_c = gr.Button("Submit")
        button_c.click(dprocess, inputs=[textbox_c], outputs=output_c)

    with gr.Tab("Automations"):
        gr.Markdown("## Automation")
        gr.Markdown("Multistep composition of functional elements")
        textbox_c = gr.Textbox(label='Command C')
        output_c = gr.Textbox(label='Output C')
        button_c = gr.Button("Submit")
        button_c.click(dprocess, inputs=[textbox_c], outputs=output_c)
        
# For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
# demo = gr.Interface(fn=dprocess,
#                     inputs=[textbox],
#                     outputs="text",
#                     title="operand",
#                     description="Data Workbench CLI",
#                     theme=gr.themes.Soft())


operand.queue()
operand.launch()