File size: 2,722 Bytes
e75a48e
7ba7074
 
 
 
 
 
d52d7a5
7ba7074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfa8bc0
83eb289
7ba7074
 
 
 
dfa8bc0
 
7ba7074
 
dfa8bc0
f961b92
7ba7074
 
48ad9ce
998ddcc
 
 
d52d7a5
7ba7074
ee053e6
 
515fbbc
ee053e6
 
 
 
 
515fbbc
ece39d2
 
ee053e6
ece39d2
 
 
 
 
 
 
ee053e6
ece39d2
 
 
 
 
 
 
ee053e6
ece39d2
 
 
 
 
7ba7074
ece39d2
 
 
 
 
 
d52d7a5
477fa16
ee053e6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

from warnings import filterwarnings
filterwarnings('ignore')

import os
import uuid
import json
import gradio as gr
import pandas as pd
from huggingface_hub import CommitScheduler
from pathlib import Path

# Configure the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent

repo_id = "operand-logs"

# Create a commit scheduler
scheduler = CommitScheduler(
    repo_id=repo_id,
    repo_type="dataset",
    folder_path=log_folder,
    path_in_repo="data",
    every=2
)

def dprocess(command, ddddd):
    print('foo...')
    with scheduler.lock:
        with log_file.open("a") as f:
            f.write(json.dumps(
                {
                    'p1': 'foo',
                    'p2': 100
                }
            ))
            f.write("\n")
    return 42

# Set-up the Gradio UI
textbox = gr.Textbox(label='Command')
# company = gr.Radio(label='Company:',
#                    choices=["aws", "google", "IBM", "Meta", "msft"],
#                    value="aws")

# Create Gradio interface
# Set-up the Gradio UI
textbox = gr.Textbox(label='Command')

# Create Gradio interface with tabs
with gr.Blocks(theme=gr.themes.Soft()) as operand:
    
    gr.Markdown("# Operand CLI")
    gr.Markdown("This application allows you to process commands for different companies.")

    with gr.Tab("Tab A"):
        gr.Markdown("## This is Tab A")
        gr.Markdown("Description for Tab A")
        textbox_a = gr.Textbox(label='Command A')
        output_a = gr.Textbox(label='Output A')
        button_a = gr.Button("Submit A")
        button_a.click(dprocess, inputs=[textbox_a], outputs=output_a)
    
    with gr.Tab("Tab B"):
        gr.Markdown("## This is Tab B")
        gr.Markdown("Description for Tab B")
        textbox_b = gr.Textbox(label='Command B')
        output_b = gr.Textbox(label='Output B')
        button_b = gr.Button("Submit B")
        button_b.click(dprocess, inputs=[textbox_b], outputs=output_b)
    
    with gr.Tab("Tab C"):
        gr.Markdown("## This is Tab C")
        gr.Markdown("Description for Tab C")
        textbox_c = gr.Textbox(label='Command C')
        output_c = gr.Textbox(label='Output C')
        button_c = gr.Button("Submit C")
        button_c.click(dprocess, inputs=[textbox_c], outputs=output_c)

# For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
# demo = gr.Interface(fn=dprocess,
#                     inputs=[textbox],
#                     outputs="text",
#                     title="operand",
#                     description="Data Workbench CLI",
#                     theme=gr.themes.Soft())


operand.queue()
operand.launch()