File size: 4,502 Bytes
e75a48e
7ba7074
 
 
 
 
 
d52d7a5
7ba7074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aefa6d
83eb289
7ba7074
 
 
 
dfa8bc0
 
7ba7074
 
dfa8bc0
f961b92
7ba7074
 
12dd403
 
998ddcc
 
 
d52d7a5
ee053e6
4b57dab
ee053e6
4b57dab
 
6452dd6
4b57dab
98cf158
4b57dab
 
6f14589
4b57dab
 
 
 
8f50f98
4b57dab
 
ece39d2
4b57dab
 
 
 
 
 
 
ece39d2
4b57dab
 
 
 
 
 
 
ece39d2
4b57dab
 
 
 
 
 
 
2ceea22
4b57dab
 
 
 
 
 
 
2ceea22
4b57dab
 
 
 
 
 
 
2ceea22
4b57dab
 
 
 
 
 
 
2ceea22
7ba7074
62c6149
4b57dab
 
 
 
 
d52d7a5
ee053e6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

from warnings import filterwarnings
filterwarnings('ignore')

import os
import uuid
import json
import gradio as gr
import pandas as pd
from huggingface_hub import CommitScheduler
from pathlib import Path

# Configure the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent

repo_id = "operand-logs"

# Create a commit scheduler
scheduler = CommitScheduler(
    repo_id=repo_id,
    repo_type="dataset",
    folder_path=log_folder,
    path_in_repo="data",
    every=2
)

def process_command(command, ddddd):
    print('foo...')
    with scheduler.lock:
        with log_file.open("a") as f:
            f.write(json.dumps(
                {
                    'p1': 'foo',
                    'p2': 100
                }
            ))
            f.write("\n")
    return 42

# Set-up the Gradio UI
textbox = gr.Textbox(label='Command')

# company = gr.Radio(label='Company:',
#                    choices=["aws", "google", "IBM", "Meta", "msft"],
#                    value="aws")

# Create Gradio interface with tabs
# with gr.Blocks(theme=gr.themes.Soft()) as operand:
    
#     gr.Markdown("# operand")
#     gr.Markdown("No-code Data Automation Studio<br><br>")
    
#     with gr.Tab("Source"):
        
#         gr.Markdown("## Data Sources")
#         gr.Markdown("Instances of data sources e.g., Jira Cloud endpoint, Trello endpoint, Github endpoint")

#         textbox_a = gr.Textbox(label='Command')
#         output_a = gr.Textbox(label='Output')
#         button_a = gr.Button("Submit")
#         button_a.click(process_command, inputs=[textbox_a], outputs=output_a)

#         with gr.Accordion("Syntax"):
#             gr.Markdown("<br>data_source my-ds-name1 my-ds-desc1 my-jira-endpoint1 my-jira-creds1")
    
#     with gr.Tab("Set"):
#         gr.Markdown("## Data Sets")
#         gr.Markdown("A data set from a data source.")
#         textbox_b = gr.Textbox(label='Command')
#         output_b = gr.Textbox(label='Output')
#         button_b = gr.Button("Submit")
#         button_b.click(process_command, inputs=[textbox_b], outputs=output_b)
    
#     with gr.Tab("Transform"):
#         gr.Markdown("## Data Transforms")
#         gr.Markdown("A transformation of a data set into a new data set.")
#         textbox_c = gr.Textbox(label='Command')
#         output_c = gr.Textbox(label='Output')
#         button_c = gr.Button("Submit")
#         button_c.click(process_command, inputs=[textbox_c], outputs=output_c)

#     with gr.Tab("Analysis"):
#         gr.Markdown("## Data Analyses")
#         gr.Markdown("Statistical analysis of a data set e.g., slope calculation on feature")
#         textbox_d = gr.Textbox(label='Command')
#         output_d = gr.Textbox(label='Output')
#         button_d = gr.Button("Submit")
#         button_d.click(process_command, inputs=[textbox_d], outputs=output_d)

#     with gr.Tab("Visualization"):
#         gr.Markdown("## Data Visualizations")
#         gr.Markdown("A visual insight from a data set or data analysis results e.g., matplotlib, sns, plotly")
#         textbox_e = gr.Textbox(label='Command')
#         output_e = gr.Textbox(label='Output')
#         button_e = gr.Button("Submit")
#         button_e.click(process_command, inputs=[textbox_e], outputs=output_e)

#     with gr.Tab("Notification"):
#         gr.Markdown("## Notifications")
#         gr.Markdown("Scheduled transmission of data set, data analysis or data visualization direct to user device")
#         textbox_f = gr.Textbox(label='Command')
#         output_f = gr.Textbox(label='Output')
#         button_f = gr.Button("Submit")
#         button_f.click(process_command, inputs=[textbox_f], outputs=output_f)

#     with gr.Tab("Automation"):
#         gr.Markdown("## Automation")
#         gr.Markdown("Multistep composition of functional elements")
#         textbox_g = gr.Textbox(label='Command')
#         output_g = gr.Textbox(label='Output')
#         button_g = gr.Button("Submit")
#         button_g.click(process_command, inputs=[textbox_g], outputs=output_g)
        
# For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
operand = gr.Interface(fn=process_command,
                    inputs=[textbox],
                    outputs="text",
                    title="operand",
                    description="Data Workbench CLI",
                    theme=gr.themes.Soft())

operand.queue()
operand.launch()