operand / app.py
eogreen's picture
Update app.py
a03eb9f verified
raw
history blame
4.4 kB
from warnings import filterwarnings
filterwarnings('ignore')
import os
import uuid
import json
import gradio as gr
import pandas as pd
from huggingface_hub import CommitScheduler
from pathlib import Path
# Configure the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent
repo_id = "operand-logs"
# Create a commit scheduler
scheduler = CommitScheduler(
repo_id=repo_id,
repo_type="dataset",
folder_path=log_folder,
path_in_repo="data",
every=2
)
def process_command(command, ddddd):
print('foo...')
with scheduler.lock:
with log_file.open("a") as f:
f.write(json.dumps(
{
'p1': 'foo',
'p2': 100
}
))
f.write("\n")
return 42
# Set-up the Gradio UI
#textbox = gr.Textbox(label='Command')
# company = gr.Radio(label='Company:',
# choices=["aws", "google", "IBM", "Meta", "msft"],
# value="aws")
# Create Gradio interface with tabs
with gr.Blocks(theme=gr.themes.Soft()) as operand:
gr.Markdown("# operand")
gr.Markdown("No-code Data Automation Studio<br><br>")
with gr.Tab("Source"):
gr.Markdown("## Source")
with gr.Accordion("Syntax"):
gr.Markdown("<br>data_source my-ds-name1 my-ds-desc1 my-jira-endpoint1 my-jira-creds1")
gr.Markdown("Instances of data sources e.g., Jira Cloud endpoint, Trello endpoint, Github endpoint")
textbox_a = gr.Textbox(label='Command')
output_a = gr.Textbox(label='Output')
button_a = gr.Button("Submit")
button_a.click(process_command, inputs=[textbox_a], outputs=output_a)
with gr.Tab("Set"):
gr.Markdown("## Data Set")
gr.Markdown("A data set from a data source.")
textbox_b = gr.Textbox(label='Command')
output_b = gr.Textbox(label='Output')
button_b = gr.Button("Submit")
button_b.click(process_command, inputs=[textbox_b], outputs=output_b)
with gr.Tab("Transform"):
gr.Markdown("## Data Transform")
gr.Markdown("A transformation of a data set into a new data set.")
textbox_c = gr.Textbox(label='Command')
output_c = gr.Textbox(label='Output')
button_c = gr.Button("Submit")
button_c.click(process_command, inputs=[textbox_c], outputs=output_c)
with gr.Tab("Analysis"):
gr.Markdown("## Data Analysis")
gr.Markdown("Statistical analysis of a data set e.g., slope calculation on feature")
textbox_d = gr.Textbox(label='Command')
output_d = gr.Textbox(label='Output')
button_d = gr.Button("Submit")
button_d.click(process_command, inputs=[textbox_d], outputs=output_d)
with gr.Tab("Visualization"):
gr.Markdown("## Data Visualization")
gr.Markdown("A visual insight from a data set or data analysis results e.g., matplotlib, sns, plotly")
textbox_e = gr.Textbox(label='Command')
output_e = gr.Textbox(label='Output')
button_e = gr.Button("Submit")
button_e.click(process_command, inputs=[textbox_e], outputs=output_e)
with gr.Tab("Notification"):
gr.Markdown("## Notifications")
gr.Markdown("Scheduled transmission of data set, data analysis or data visualization direct to user device")
textbox_f = gr.Textbox(label='Command')
output_f = gr.Textbox(label='Output')
button_f = gr.Button("Submit")
button_f.click(process_command, inputs=[textbox_f], outputs=output_f)
with gr.Tab("Automation"):
gr.Markdown("## Automation")
gr.Markdown("Multistep composition of functional elements")
textbox_g = gr.Textbox(label='Command')
output_g = gr.Textbox(label='Output')
button_g = gr.Button("Submit")
button_g.click(process_command, inputs=[textbox_g], outputs=output_g)
# For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
# demo = gr.Interface(fn=dprocess,
# inputs=[textbox],
# outputs="text",
# title="operand",
# description="Data Workbench CLI",
# theme=gr.themes.Soft())
operand.queue()
operand.launch()