|
import os |
|
import uuid |
|
import joblib |
|
import json |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
|
|
from huggingface_hub import CommitScheduler |
|
from pathlib import Path |
|
|
|
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" |
|
log_folder = log_file.parent |
|
|
|
scheduler = CommitScheduler( |
|
repo_id="machine-failure-logs", |
|
repo_type="dataset", |
|
folder_path=log_folder, |
|
path_in_repo="data", |
|
every=2 |
|
) |
|
|
|
machine_failure_predictor = joblib.load('model.joblib') |
|
|
|
air_temperature_input = gr.Number(label='Air temperature [K]') |
|
process_temperature_input = gr.Number(label='Process temperature [K]') |
|
rotational_speed_input = gr.Number(label='Rotational speed [rpm]') |
|
torque_input = gr.Number(label='Torque [Nm]') |
|
tool_wear_input = gr.Number(label='Tool wear [min]') |
|
type_input = gr.Dropdown( |
|
['L', 'M', 'H'], |
|
label='Type' |
|
) |
|
|
|
model_output = gr.Label(label="Machine failure") |
|
|
|
def predict_machine_failure(air_temperature, process_temperature, rotational_speed, torque, tool_wear, type): |
|
sample = { |
|
'Air temperature [K]': air_temperature, |
|
'Process temperature [K]': process_temperature, |
|
'Rotational speed [rpm]': rotational_speed, |
|
'Torque [Nm]': torque, |
|
'Tool wear [min]': tool_wear, |
|
'Type': type |
|
} |
|
data_point = pd.DataFrame([sample]) |
|
prediction = machine_failure_predictor.predict(data_point).tolist() |
|
|
|
with scheduler.lock: |
|
with log_file.open("a") as f: |
|
f.write(json.dumps( |
|
{ |
|
'Air temperature [K]': air_temperature, |
|
'Process temperature [K]': process_temperature, |
|
'Rotational speed [rpm]': rotational_speed, |
|
'Torque [Nm]': torque, |
|
'Tool wear [min]': tool_wear, |
|
'Type': type, |
|
'prediction': prediction[0] |
|
} |
|
)) |
|
f.write("\n") |
|
|
|
return prediction[0] |
|
|
|
demo = gr.Interface( |
|
fn=predict_machine_failure, |
|
inputs=[air_temperature_input, process_temperature_input, rotational_speed_input, |
|
torque_input, tool_wear_input, type_input], |
|
outputs=model_output, |
|
title="Machine Failure Predictor", |
|
description="This API allows you to predict the machine failure status of an equipment", |
|
allow_flagging="auto", |
|
concurrency_limit=8 |
|
) |
|
|
|
demo.queue() |
|
demo.launch(share=False) |