Upload 3 files
Browse files- app.py +121 -0
- model.joblib +3 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import uuid
|
3 |
+
import joblib
|
4 |
+
import json
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
from huggingface_hub import CommitScheduler
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
13 |
+
log_folder = log_file.parent
|
14 |
+
|
15 |
+
scheduler = CommitScheduler(
|
16 |
+
repo_id="term-deposit-logs",
|
17 |
+
repo_type="dataset",
|
18 |
+
folder_path=log_folder,
|
19 |
+
path_in_repo="data",
|
20 |
+
every=2
|
21 |
+
)
|
22 |
+
|
23 |
+
term_deposit_predictor = joblib.load('model.joblib')
|
24 |
+
|
25 |
+
age_input = gr.Number(label="Age")
|
26 |
+
duration_input = gr.Number(label='Duration(Sec)')
|
27 |
+
cc_contact_freq_input = gr.Number(label='CC Contact Freq')
|
28 |
+
days_since_pc_input = gr.Number(label='Days Since PC')
|
29 |
+
pc_contact_freq_input = gr.Number(label='Pc Contact Freq')
|
30 |
+
job_input = gr.Dropdown(['admin.', 'blue-collar', 'technician', 'services', 'management',
|
31 |
+
'retired', 'entrepreneur', 'self-employed', 'housemaid', 'unemployed',
|
32 |
+
'student', 'unknown'],label="Job")
|
33 |
+
marital_input = gr.Dropdown(['married', 'single', 'divorced', 'unknown'],label='Marital Status')
|
34 |
+
education_input = gr.Dropdown(['experience', 'university degree', 'high school', 'professional.course',
|
35 |
+
'Others', 'illiterate'],label='Education')
|
36 |
+
defaulter_input = gr.Dropdown(['no', 'unknown', 'yes'],label='Defaulter')
|
37 |
+
home_loan_input = gr.Dropdown(['yes', 'no', 'unknown'],label='Home Loan')
|
38 |
+
personal_loan_input = gr.Dropdown(['yes', 'no', 'unknown'],label='Personal Loan')
|
39 |
+
communication_type_input = gr.Dropdown(['cellular', 'telephone'],label='Communication Type')
|
40 |
+
last_contacted_input = gr.Dropdown(['may', 'jul', 'aug', 'jun', 'nov', 'apr', 'oct', 'mar', 'sep', 'dec'],label='Last Contacted')
|
41 |
+
day_of_week_input = gr.Dropdown(['thu', 'mon', 'wed', 'tue', 'fri'],label='Day of Week')
|
42 |
+
pc_outcome_input = gr.Dropdown(['nonexistent', 'failure', 'success'], label='PC Outcome')
|
43 |
+
|
44 |
+
|
45 |
+
model_output = gr.Label(label="Subscribed")
|
46 |
+
|
47 |
+
def predict_term_deposit(age, duration, cc_contact_freq, days_since_pc, pc_contact_freq, job, marital_status, education,
|
48 |
+
defaulter, home_loan, personal_loan, communication_type, last_contacted,
|
49 |
+
day_of_week, pc_outcome):
|
50 |
+
sample = {
|
51 |
+
'Age': age,
|
52 |
+
'Duration(Sec)': duration,
|
53 |
+
'CC Contact Freq': cc_contact_freq,
|
54 |
+
'Days Since PC': days_since_pc,
|
55 |
+
'PC Contact Freq': pc_contact_freq,
|
56 |
+
'Job': job,
|
57 |
+
'Marital Status': marital_status,
|
58 |
+
'Education': education,
|
59 |
+
'Defaulter': defaulter,
|
60 |
+
'Home Loan': home_loan,
|
61 |
+
'Personal Loan': personal_loan,
|
62 |
+
'Communication Type': communication_type,
|
63 |
+
'Last Contacted': last_contacted,
|
64 |
+
'Day of Week': day_of_week,
|
65 |
+
'PC Outcome': pc_outcome,
|
66 |
+
}
|
67 |
+
data_point = pd.DataFrame([sample])
|
68 |
+
prediction = term_deposit_predictor.predict(data_point).tolist()
|
69 |
+
|
70 |
+
with scheduler.lock:
|
71 |
+
with log_file.open("a") as f:
|
72 |
+
f.write(json.dumps(
|
73 |
+
{
|
74 |
+
'Age': age,
|
75 |
+
'Duration(Sec)': duration,
|
76 |
+
'CC Contact Freq': cc_contact_freq,
|
77 |
+
'Days Since PC': days_since_pc,
|
78 |
+
'PC Contact Freq': pc_contact_freq,
|
79 |
+
'Job': job,
|
80 |
+
'Marital Status': marital_status,
|
81 |
+
'Education': education,
|
82 |
+
'Defaulter': defaulter,
|
83 |
+
'Home Loan': home_loan,
|
84 |
+
'Personal Loan': personal_loan,
|
85 |
+
'Communication Type': communication_type,
|
86 |
+
'Last Month Contacted': last_contacted,
|
87 |
+
'Day of Week': day_of_week,
|
88 |
+
'PC Outcome': pc_outcome,
|
89 |
+
'prediction': prediction[0]
|
90 |
+
}
|
91 |
+
))
|
92 |
+
f.write("\n")
|
93 |
+
|
94 |
+
return prediction[0]
|
95 |
+
|
96 |
+
demo = gr.Interface(
|
97 |
+
fn=predict_term_deposit,
|
98 |
+
inputs=[age_input,
|
99 |
+
duration_input,
|
100 |
+
cc_contact_freq_input,
|
101 |
+
days_since_pc_input,
|
102 |
+
pc_contact_freq_input,
|
103 |
+
job_input,
|
104 |
+
marital_input,
|
105 |
+
education_input,
|
106 |
+
defaulter_input,
|
107 |
+
home_loan_input,
|
108 |
+
personal_loan_input,
|
109 |
+
communication_type_input,
|
110 |
+
last_contacted_input,
|
111 |
+
day_of_week_input,
|
112 |
+
pc_outcome_input],
|
113 |
+
outputs=model_output,
|
114 |
+
title="Term Deposit Prediction",
|
115 |
+
description="This API allows you to predict the person who are going to likely subscribe the term deposit",
|
116 |
+
allow_flagging="auto",
|
117 |
+
concurrency_limit=8
|
118 |
+
)
|
119 |
+
|
120 |
+
demo.queue()
|
121 |
+
demo.launch(share=False)
|
model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0db284be28e1303ab3612a3a6e35076ff8e9e32c035dd4e2ffdf9635b940780
|
3 |
+
size 3838
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
scikit-learn==1.2.2
|
2 |
+
numpy==1.26.4
|