Upload app.py
Browse files
app.py
CHANGED
@@ -25,7 +25,7 @@ model_name = 'gpt-4o-mini' # e.g. 'gpt-3.5-turbo'
|
|
25 |
# Initialize the ChatOpenAI model
|
26 |
llm = ChatOpenAI(model_name=model_name, temperature=0) # Set temperature to 0 for deterministic output
|
27 |
# Create a HumanMessage
|
28 |
-
user_message = HumanMessage(content="What's the weather like today?")
|
29 |
|
30 |
# Define the embedding model and the vectorstore
|
31 |
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
|
@@ -127,7 +127,8 @@ def llm_query(user_input,company):
|
|
127 |
# temperature=0
|
128 |
# )
|
129 |
|
130 |
-
llm_response = response.choices[0].message.content.strip()
|
|
|
131 |
|
132 |
except Exception as e:
|
133 |
|
@@ -153,12 +154,12 @@ def llm_query(user_input,company):
|
|
153 |
return llm_response
|
154 |
|
155 |
# Set-up the Gradio UI
|
156 |
-
company = gr.Radio(label='Company:', choices=["aws", "google", "ibm", "meta", "microsoft"], value="aws") # Create a radio button for company selection
|
157 |
textbox = gr.Textbox(label='Question:') # Create a textbox for user input
|
|
|
158 |
|
159 |
# Create Gradio interface
|
160 |
# For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
|
161 |
demo = gr.Interface(fn=llm_query, inputs=[textbox, company], outputs="text", title="Financial Analyst Assistant", description="Ask questions about the financial performance of AWS, Google, IBM, Meta, and Microsoft based on their 10-K reports.\n\nPlease enter a question below.")
|
162 |
|
163 |
demo.queue()
|
164 |
-
demo.launch()
|
|
|
25 |
# Initialize the ChatOpenAI model
|
26 |
llm = ChatOpenAI(model_name=model_name, temperature=0) # Set temperature to 0 for deterministic output
|
27 |
# Create a HumanMessage
|
28 |
+
#user_message = HumanMessage(content="What's the weather like today?")
|
29 |
|
30 |
# Define the embedding model and the vectorstore
|
31 |
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
|
|
|
127 |
# temperature=0
|
128 |
# )
|
129 |
|
130 |
+
#llm_response = response.choices[0].message.content.strip()
|
131 |
+
llm_response = response.content.strip()
|
132 |
|
133 |
except Exception as e:
|
134 |
|
|
|
154 |
return llm_response
|
155 |
|
156 |
# Set-up the Gradio UI
|
|
|
157 |
textbox = gr.Textbox(label='Question:') # Create a textbox for user input
|
158 |
+
company = gr.Radio(label='Company:', choices=["aws", "google", "ibm", "meta", "microsoft"], value="aws") # Create a radio button for company selection
|
159 |
|
160 |
# Create Gradio interface
|
161 |
# For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
|
162 |
demo = gr.Interface(fn=llm_query, inputs=[textbox, company], outputs="text", title="Financial Analyst Assistant", description="Ask questions about the financial performance of AWS, Google, IBM, Meta, and Microsoft based on their 10-K reports.\n\nPlease enter a question below.")
|
163 |
|
164 |
demo.queue()
|
165 |
+
demo.launch()
|