Upload 2 files
Browse files- app.py +155 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import the necessary Libraries
|
2 |
+
from warnings import filterwarnings
|
3 |
+
filterwarnings('ignore')
|
4 |
+
import os
|
5 |
+
import uuid
|
6 |
+
import json
|
7 |
+
import gradio as gr
|
8 |
+
import pandas as pd
|
9 |
+
from huggingface_hub import CommitScheduler
|
10 |
+
from pathlib import Path
|
11 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
12 |
+
from langchain.vectorstores import Chroma
|
13 |
+
from langchain.llms import OpenAI
|
14 |
+
|
15 |
+
# Create Client
|
16 |
+
import os
|
17 |
+
os.environ['OPENAI_API_KEY'] = "gl-U2FsdGVkX1+0bNWD6YsVLZUYsn0m1WfLxUzrP0xUFbtWFAfk9Z1Cz+mD8u1yqKtV"; # e.g. gl-U2FsdGVkX19oG1mRO+LGAiNeC7nAeU8M65G4I6bfcdI7+9GUEjFFbplKq48J83by
|
18 |
+
os.environ["OPENAI_BASE_URL"] = "https://aibe.mygreatlearning.com/openai/v1" # e.g. "https://aibe.mygreatlearning.com/openai/v1";
|
19 |
+
|
20 |
+
llm_client = OpenAI()
|
21 |
+
|
22 |
+
# Define the embedding model and the vectorstore
|
23 |
+
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
|
24 |
+
vectorstore_persisted = Chroma(
|
25 |
+
collection_name='10k_reports',
|
26 |
+
persist_directory='10k_reports_db',
|
27 |
+
embedding_function=embedding_model
|
28 |
+
)
|
29 |
+
|
30 |
+
# Load the persisted vectorDB
|
31 |
+
vectorstore_persisted.load()
|
32 |
+
|
33 |
+
#
|
34 |
+
##
|
35 |
+
#
|
36 |
+
|
37 |
+
# Prepare the logging functionality
|
38 |
+
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
39 |
+
log_folder = log_file.parent
|
40 |
+
|
41 |
+
scheduler = CommitScheduler(
|
42 |
+
repo_id="eric-green-rag-financial-analyst",
|
43 |
+
repo_type="dataset",
|
44 |
+
folder_path=log_folder,
|
45 |
+
path_in_repo="data",
|
46 |
+
every=2
|
47 |
+
)
|
48 |
+
|
49 |
+
# Define the Q&A system message
|
50 |
+
# Create a system message for the LLM
|
51 |
+
qna_system_message = """
|
52 |
+
You are an assistant to a tech industry financial analyst. Your task is to provide relevant information about a set of companies AWS, Google, IBM, Meta, Microsoft.
|
53 |
+
|
54 |
+
User input will include the necessary context for you to answer their questions. This context will begin with the token: ###Context.
|
55 |
+
The context contains references to specific portions of documents relevant to the user's query, along with source links.
|
56 |
+
The source for a context will begin with the token ###Source.
|
57 |
+
|
58 |
+
When crafting your response:
|
59 |
+
1. Select only context relevant to answer the question.
|
60 |
+
2. Include the source links in your response.
|
61 |
+
3. User questions will begin with the token: ###Question.
|
62 |
+
4. If the question is irrelevant to financial report information for the 5 companies, respond with "I am unable to locate relevent information. I answer questions related to the financial performance of AWS, Google, IBM, Meta and Microsoft."
|
63 |
+
|
64 |
+
Please adhere to the following guidelines:
|
65 |
+
- Your response should only be about the question asked and nothing else.
|
66 |
+
- Answer only using the context provided.
|
67 |
+
- Do not mention anything about the context in your final answer.
|
68 |
+
- If the answer is not found in the context, it is very very important for you to respond with "I am unable to locate a relevent answer."
|
69 |
+
- Always quote the source when you use the context. Cite the relevant source at the end of your response under the section - Source:
|
70 |
+
- Do not make up sources. Use the links provided in the sources section of the context and nothing else. You are prohibited from providing other links/sources.
|
71 |
+
|
72 |
+
Here is an example of how to structure your response:
|
73 |
+
|
74 |
+
Answer:
|
75 |
+
[Answer]
|
76 |
+
|
77 |
+
Source:
|
78 |
+
[Source]
|
79 |
+
"""
|
80 |
+
|
81 |
+
# Define the user message template
|
82 |
+
# Create a message template
|
83 |
+
qna_user_message_template = """
|
84 |
+
###Context
|
85 |
+
{context}
|
86 |
+
|
87 |
+
###Question
|
88 |
+
{question}
|
89 |
+
"""
|
90 |
+
|
91 |
+
# Define the llm_query function that runs when 'Submit' is clicked or when a API request is made
|
92 |
+
def llm_query(user_input,company):
|
93 |
+
|
94 |
+
filter = "dataset/"+company+"-10-k-2023.pdf"
|
95 |
+
|
96 |
+
relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source":filter})
|
97 |
+
|
98 |
+
# 1 - Create context_for_query
|
99 |
+
context_list = [d.page_content + "\n ###Source: " + str(d.metadata['page']) + "\n\n " for d in relevant_document_chunks]
|
100 |
+
|
101 |
+
context_for_query = ". ".join(context_list)
|
102 |
+
|
103 |
+
# 2 - Create messages
|
104 |
+
prompt = [
|
105 |
+
{'role':'system', 'content': qna_system_message},
|
106 |
+
{'role': 'user', 'content': qna_user_message_template.format(
|
107 |
+
context=context_for_query,
|
108 |
+
question=user_input
|
109 |
+
)
|
110 |
+
}
|
111 |
+
]
|
112 |
+
|
113 |
+
# Get response from the LLM
|
114 |
+
try:
|
115 |
+
response = llm_client.chat.completions.create(
|
116 |
+
model=model_name,
|
117 |
+
messages=prompt,
|
118 |
+
temperature=0
|
119 |
+
)
|
120 |
+
|
121 |
+
prediction = response.choices[0].message.content.strip()
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
|
125 |
+
prediction = f'Sorry, I encountered the following error: \n {e}'
|
126 |
+
|
127 |
+
print(prediction)
|
128 |
+
|
129 |
+
# While the prediction is made, log both the inputs and outputs to a local log file
|
130 |
+
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
|
131 |
+
# access
|
132 |
+
|
133 |
+
with scheduler.lock:
|
134 |
+
with log_file.open("a") as f:
|
135 |
+
f.write(json.dumps(
|
136 |
+
{
|
137 |
+
'user_input': user_input,
|
138 |
+
'retrieved_context': context_for_query,
|
139 |
+
'model_response': prediction
|
140 |
+
}
|
141 |
+
))
|
142 |
+
f.write("\n")
|
143 |
+
|
144 |
+
return prediction
|
145 |
+
|
146 |
+
# Set-up the Gradio UI
|
147 |
+
company = gr.Radio(Label='Company:', choices=["aws", "google", "ibm", "meta", "microsoft"]) # Create a radio button for company selection
|
148 |
+
textbox = gr.Textbox(Label='Question:') # Create a textbox for user input
|
149 |
+
|
150 |
+
# Create Gradio interface
|
151 |
+
# For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
|
152 |
+
demo = gr.Interface(fn=llm_query, inputs=[textbox, company], outputs="text")
|
153 |
+
|
154 |
+
demo.queue()
|
155 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
f.write('openai==1.23.2\n')
|
2 |
+
f.write('tiktoken==0.6.0\n')
|
3 |
+
f.write('pypdf==4.0.1\n')
|
4 |
+
f.write('langchain==0.1.1\n')
|
5 |
+
f.write('langchain-community==0.0.13\n')
|
6 |
+
f.write('chromadb==0.4.22\n')
|
7 |
+
f.write('sentence-transformers==2.3.1\n')
|
8 |
+
f.write('gradio==3.23.0\n')
|
9 |
+
|
10 |
+
print('requirements.txt created!')
|