Upload app.py
Browse files
app.py
CHANGED
@@ -22,7 +22,6 @@ llm_client = OpenAI()
|
|
22 |
# Define the embedding model and the vectorstore
|
23 |
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
|
24 |
|
25 |
-
# Load the persisted vectorDB
|
26 |
vectorstore_persisted = Chroma(
|
27 |
collection_name='10k_reports',
|
28 |
persist_directory='10k_reports_db',
|
@@ -117,7 +116,7 @@ def llm_query(user_input,company):
|
|
117 |
temperature=0
|
118 |
)
|
119 |
|
120 |
-
|
121 |
|
122 |
except Exception as e:
|
123 |
|
@@ -135,16 +134,16 @@ def llm_query(user_input,company):
|
|
135 |
{
|
136 |
'user_input': user_input,
|
137 |
'retrieved_context': context_for_query,
|
138 |
-
'model_response':
|
139 |
}
|
140 |
))
|
141 |
f.write("\n")
|
142 |
|
143 |
-
return
|
144 |
|
145 |
# Set-up the Gradio UI
|
146 |
-
company = gr.Radio(
|
147 |
-
textbox = gr.Textbox(
|
148 |
|
149 |
# Create Gradio interface
|
150 |
# For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
|
|
|
22 |
# Define the embedding model and the vectorstore
|
23 |
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
|
24 |
|
|
|
25 |
vectorstore_persisted = Chroma(
|
26 |
collection_name='10k_reports',
|
27 |
persist_directory='10k_reports_db',
|
|
|
116 |
temperature=0
|
117 |
)
|
118 |
|
119 |
+
llm_response = response.choices[0].message.content.strip()
|
120 |
|
121 |
except Exception as e:
|
122 |
|
|
|
134 |
{
|
135 |
'user_input': user_input,
|
136 |
'retrieved_context': context_for_query,
|
137 |
+
'model_response': llm_response
|
138 |
}
|
139 |
))
|
140 |
f.write("\n")
|
141 |
|
142 |
+
return llm_response
|
143 |
|
144 |
# Set-up the Gradio UI
|
145 |
+
company = gr.Radio(label='Company:', choices=["aws", "google", "ibm", "meta", "microsoft"]) # Create a radio button for company selection
|
146 |
+
textbox = gr.Textbox(label='Question:') # Create a textbox for user input
|
147 |
|
148 |
# Create Gradio interface
|
149 |
# For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
|