|
import gradio as gr |
|
import random |
|
import time |
|
|
|
fp = open("/deep2/u/eprakash/MedSegDiff/data/ISIC/ISBI2016_ISIC_Part3B_Training_GroundTruth.csv") |
|
image_ids = [] |
|
for line in fp: |
|
image_ids.append(line.split(",")[0].split("_")[1]) |
|
image_ids = image_ids[:700] |
|
rankings = [] |
|
def load_next(rank, img_1, img_2, img_3, img_4, img_5, example, ids=image_ids): |
|
if example == len(image_ids): |
|
return [None, None, None, None, None, None, None] |
|
else: |
|
rankings.append(str(image_ids[int(example)-1]) + "," + rank) |
|
r_fp = open("ranks/isic_ranks_" + str(int(example) - 1) +".csv", "w") |
|
for r in rankings: |
|
r_fp.write(r + "\n") |
|
r_fp.close() |
|
example += 1 |
|
rank = "" |
|
img_1 = gr.Image(label="Sample #1", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_0.jpg", interactive=False) |
|
img_2 = gr.Image(label="Sample #2", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_1.jpg", interactive=False) |
|
img_3 = gr.Image(label="Sample #3", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_2.jpg", interactive=False) |
|
img_4 = gr.Image(label="Sample #4", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_3.jpg", interactive=False) |
|
img_5 = gr.Image(label="Sample #5", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[int(example)-1]) + "_synthetic_4.jpg", interactive=False) |
|
return [rank, img_1, img_2, img_3, img_4, img_5, example] |
|
|
|
with gr.Blocks() as demo: |
|
example = gr.Number(label="Example #", value=1, interactive=False) |
|
rank = gr.Textbox(label="Rankings (Best to worst, comma-separated, no spaces)") |
|
with gr.Row(): |
|
img_1 = gr.Image(label="Sample #1", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_0.jpg", interactive=False) |
|
img_2 = gr.Image(label="Sample #2", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_1.jpg", interactive=False) |
|
img_3 = gr.Image(label="Sample #3", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_2.jpg", interactive=False) |
|
img_4 = gr.Image(label="Sample #4", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_3.jpg", interactive=False) |
|
img_5 = gr.Image(label="Sample #5", value="/deep2/u/eprakash/Diffusion-based-Segmentation/isic_synthetic_data/" + str(image_ids[0]) + "_synthetic_4.jpg", interactive=False) |
|
next_btn = gr.Button(value="Next") |
|
next_btn.click(fn=load_next, inputs=[rank, img_1, img_2, img_3, img_4, img_5, example], outputs=[rank, img_1, img_2, img_3, img_4, img_5, example], queue=False) |
|
demo.queue() |
|
demo.launch(share=True) |
|
|
|
fp.close() |
|
|