import gradio as gr import random import time import os from glob import glob from PIL import Image from huggingface_hub import HfApi #import torchvision.transforms as transforms #api = HfApi() num_rank = 200 image_prefix = "ct_synthetic_60_large/" mask_prefix = "ct/orig_masks/" image_ids = [] mask_ids = [] img_list = "ct/train_60.csv" with open(img_list) as fp: for line in fp: ex = line.strip().split(",")[0] mask_ids.append(ex.split("_")[0] + "_mask_" + ex.split("_")[1]) image_ids.append("('" + ex + "',)") image_ids = image_ids[301:501] mask_ids = mask_ids[301:501] save_path = "ct_seg_ranks" def is_int(s): try: int(s) return True except ValueError: return False def load_img(img_path, size=512): img = Image.open(img_path).convert('RGB') #transform_list = [transforms.Resize((size, size))] #transform = transforms.Compose(transform_list) #img = transform(img) return img def find_completed_idxs(save_path=save_path): files = os.listdir(save_path) print("Path: ", os.path.abspath(save_path)) incorrect_files = [] if len(files) == 0: return [-1], [] else: file_list = [] for f in files: f_name = int(f.split(".")[0]) with open(save_path + "/" + f) as fp: for line in fp: items = line.strip().split(",") if (len(items) != 5 and f_name != -1): incorrect_files.append(f_name) else: if ((not is_int(items[1].strip()) or not is_int(items[2].strip()) or not is_int(items[3].strip()) or not is_int(items[4].strip())) and f_name != -1): incorrect_files.append(f_name) file_list.append(f_name) file_list = sorted(file_list) incorrect_files = sorted(incorrect_files) return file_list, incorrect_files def load_next(rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example, ids=image_ids, image_prefix=image_prefix, save_path=save_path): ''' api.upload_folder( folder_path="/home/user/app/ct_seg_ranks", repo_id="eprakash/gradio", repo_type="space",) ''' file_list, incorrect_files = find_completed_idxs() print(str(file_list) + " " + str(incorrect_files)) if (int(example) not in file_list or int(example) in incorrect_files): r = str(image_ids[int(example)]).split(",")[0].split("(")[1] + "," + rank r_fp = open(save_path + "/" + str(int(example)) +".txt", "w") r_fp.write(r + "\n") r_fp.close() ''' api.upload_folder( folder_path="/home/user/app/ct_seg_ranks", repo_id="eprakash/gradio", repo_type="space",) ''' file_list, incorrect_files = find_completed_idxs() if (len(incorrect_files) != 0): example = incorrect_files[-1] else: example = file_list[-1] + 1 if int(example) == num_rank: rank = "DONE!" example = -1 mask_1 = gr.Image(label="Mask", value=load_img("blank.jpg"), interactive=False) img_1 = gr.Image(label="Sample #1", value=load_img("blank.jpg"), interactive=False) mask_2 = gr.Image(label="Mask", value=load_img("blank.jpg"), interactive=False) img_2 = gr.Image(label="Sample #2", value=load_img("blank.jpg"), interactive=False) mask_3 = gr.Image(label="Mask", value=load_img("blank.jpg"), interactive=False) img_3 = gr.Image(label="Sample #3", value=load_img("blank.jpg"), interactive=False) mask_4 = gr.Image(label="Mask", value=load_img("blank.jpg"), interactive=False) img_4 = gr.Image(label="Sample #4", value=load_img("blank.jpg"), interactive=False) else: rank = "" img_1 = gr.Image(label="Sample #1", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_0.png"), interactive=False) mask_1 = gr.Image(label="Mask", value=load_img(mask_prefix + str(mask_ids[int(example)]) + ".jpg"), interactive=False) img_2 = gr.Image(label="Sample #2", value=load_img(image_prefix+ str(image_ids[int(example)]) + "_synthetic_1.png"), interactive=False) mask_2 = gr.Image(label="Mask", value=load_img(mask_prefix + str(mask_ids[int(example)]) + ".jpg"), interactive=False) img_3 = gr.Image(label="Sample #3", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_2.png"), interactive=False) mask_3 = gr.Image(label="Mask", value=load_img(mask_prefix + str(mask_ids[int(example)]) + ".jpg"), interactive=False) img_4 = gr.Image(label="Sample #4", value=load_img(image_prefix + str(image_ids[int(example)]) + "_synthetic_3.png"), interactive=False) mask_4 = gr.Image(label="Mask", value=load_img(mask_prefix + str(mask_ids[int(example)]) + ".jpg"), interactive=False) return [rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example] with gr.Blocks() as demo: last_idx = -1 example = gr.Number(label="Example #. Click next for #-1 (blank starting page).", value=last_idx, interactive=False) rank = gr.Textbox(label="Rankings (Best to worst, comma-separated, no spaces).") with gr.Column(scale=1): with gr.Row(): mask_1 = gr.Image(label="Mask", value=load_img("blank.jpg"), interactive=False) img_1 = gr.Image(label="Sample #1", value=load_img("blank.jpg"), interactive=False) with gr.Row(): mask_2 = gr.Image(label="Mask", value=load_img("blank.jpg"), interactive=False) img_2 = gr.Image(label="Sample #2", value=load_img("blank.jpg"), interactive=False) with gr.Row(): mask_3 = gr.Image(label="Mask", value=load_img("blank.jpg"), interactive=False) img_3 = gr.Image(label="Sample #3", value=load_img("blank.jpg"), interactive=False) with gr.Row(): mask_4 = gr.Image(label="Mask", value=load_img("blank.jpg"), interactive=False) img_4 = gr.Image(label="Sample #4", value=load_img("blank.jpg"), interactive=False) next_btn = gr.Button(value="Next") next_btn.click(fn=load_next, inputs=[rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example], outputs=[rank, img_1, mask_1, img_2, mask_2, img_3, mask_3, img_4, mask_4, example], queue=False) demo.queue() demo.launch(share=True)