Spaces:
Sleeping
Sleeping
add dataset
Browse files- .gitignore +1 -0
- app.py +98 -4
- requirements.txt +2 -1
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
app.py
CHANGED
@@ -1,7 +1,101 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
from datasets import load_dataset
|
5 |
|
6 |
+
dataset = load_dataset("erceguder/histocan-test", token=True)
|
|
|
7 |
|
8 |
+
COLOR_PALETTE = {
|
9 |
+
'others': (0, 0, 0),
|
10 |
+
't-g1': (0, 192, 0),
|
11 |
+
't-g2': (255, 224, 32),
|
12 |
+
't-g3': (255, 0, 0),
|
13 |
+
'normal-mucosa': (0, 32, 255)
|
14 |
+
}
|
15 |
+
|
16 |
+
def files_uploaded(paths):
|
17 |
+
if len(paths) != 16:
|
18 |
+
raise gr.Error("16 segmentation masks are needed.")
|
19 |
+
|
20 |
+
def evaluate(paths):
|
21 |
+
if paths == None:
|
22 |
+
raise gr.Error("Upload segmentation masks first!")
|
23 |
+
|
24 |
+
# Init dicts for accumulating image metrics and calculating per-class scores
|
25 |
+
metrics = {}
|
26 |
+
for class_ in COLOR_PALETTE.keys():
|
27 |
+
idict = {
|
28 |
+
"tp": 0.0,
|
29 |
+
"fp": 0.0,
|
30 |
+
"tn": 0.0,
|
31 |
+
"fn": 0.0,
|
32 |
+
}
|
33 |
+
metrics[class_] = idict
|
34 |
+
|
35 |
+
scores = {}
|
36 |
+
for class_ in COLOR_PALETTE.keys():
|
37 |
+
idict = {
|
38 |
+
"recall": 0.0,
|
39 |
+
"precision": 0.0,
|
40 |
+
"f1": 0.0
|
41 |
+
}
|
42 |
+
scores[class_] = idict
|
43 |
+
|
44 |
+
for path in paths:
|
45 |
+
pred = np.array(Image.open(path.name)) # shape (H, W, 3)
|
46 |
+
# gt = np.array(Image.open(os.path.basename(file.name)))
|
47 |
+
|
48 |
+
# assert gt.ndim == 2
|
49 |
+
assert pred.ndim == 3 and pred.shape[-1] == 3
|
50 |
+
# assert gt.shape == pred.shape[:-1]
|
51 |
+
|
52 |
+
# Get predictions for all classes
|
53 |
+
out = [(pred == color).all(axis=-1) for color in COLOR_PALETTE.values()]
|
54 |
+
maps = np.stack(out)
|
55 |
+
|
56 |
+
# Calculate confusion matrix and metrics
|
57 |
+
for i, class_ in enumerate(COLOR_PALETTE.keys()):
|
58 |
+
class_pred = maps[i]
|
59 |
+
# class_gt = (gt == i)
|
60 |
+
|
61 |
+
# tp = np.sum(class_pred[class_gt==True])
|
62 |
+
# fp = np.sum(class_pred[class_gt==False])
|
63 |
+
# tn = np.sum(np.logical_not(class_pred)[class_gt==False])
|
64 |
+
# fn = np.sum(np.logical_not(class_pred)[class_gt==True])
|
65 |
+
|
66 |
+
# # Accumulate metrics for each class
|
67 |
+
# metrics[class_]['tp'] += tp
|
68 |
+
# metrics[class_]['fp'] += fp
|
69 |
+
# metrics[class_]['tn'] += tn
|
70 |
+
# metrics[class_]['fn'] += fn
|
71 |
+
|
72 |
+
# Init mean recall, precision and F1 score
|
73 |
+
mRecall = 0.0
|
74 |
+
mPrecision = 0.0
|
75 |
+
mF1 = 0.0
|
76 |
+
|
77 |
+
# Calculate recall, precision and f1 scores for each class
|
78 |
+
for i, class_ in enumerate(COLOR_PALETTE.keys()):
|
79 |
+
scores[class_]['recall'] = metrics[class_]['tp'] / (metrics[class_]['tp'] + metrics[class_]['fn']) if metrics[class_]['tp'] > 0 else 0.0
|
80 |
+
scores[class_]['precision'] = metrics[class_]['tp'] / (metrics[class_]['tp'] + metrics[class_]['fp']) if metrics[class_]['tp'] > 0 else 0.0
|
81 |
+
scores[class_]['f1'] = 2 * scores[class_]['precision'] * scores[class_]['recall'] / (scores[class_]['precision'] + scores[class_]['recall']) if (scores[class_]['precision'] != 0 and scores[class_]['recall'] != 0) else 0.0
|
82 |
+
|
83 |
+
mRecall += scores[class_]['recall']
|
84 |
+
mPrecision += scores[class_]['precision']
|
85 |
+
mF1 += scores[class_]['f1']
|
86 |
+
|
87 |
+
# Calculate mean recall, precision and F1 score over all classes
|
88 |
+
class_count = len(COLOR_PALETTE)
|
89 |
+
mRecall /= class_count
|
90 |
+
mPrecision /= class_count
|
91 |
+
mF1 /= class_count
|
92 |
+
|
93 |
+
with gr.Blocks() as demo:
|
94 |
+
gr.Markdown("# HistoCan Evaluation Page")
|
95 |
+
files = gr.File(label="Upload the segmentation masks for test set", file_count="multiple", file_types=["image"])
|
96 |
+
run = gr.Button(value="Run evaluation")
|
97 |
+
|
98 |
+
files.upload(files_uploaded, files, [])
|
99 |
+
run.click(evaluate, files, [])
|
100 |
+
|
101 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
gradio==3.45.2
|
|
|
|
1 |
+
gradio==3.45.2
|
2 |
+
datasets==2.14.6
|