Spaces:
Running
on
Zero
Running
on
Zero
Add files
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: ⚡
|
4 |
colorFrom: pink
|
5 |
colorTo: gray
|
|
|
1 |
---
|
2 |
+
title: CellDetection
|
3 |
emoji: ⚡
|
4 |
colorFrom: pink
|
5 |
colorTo: gray
|
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from cpn import CpnInterface
|
3 |
+
from prep import multi_norm
|
4 |
+
from util import imread, imsave, get_examples
|
5 |
+
from celldetection import label_cmap
|
6 |
+
|
7 |
+
default_model = 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c'
|
8 |
+
|
9 |
+
|
10 |
+
def predict(filename, model=None, device=None, reduce_labels=True):
|
11 |
+
global default_model
|
12 |
+
assert isinstance(filename, str)
|
13 |
+
print(dict(
|
14 |
+
filename=filename,
|
15 |
+
model=model,
|
16 |
+
device=device,
|
17 |
+
reduce_labels=reduce_labels
|
18 |
+
), flush=True)
|
19 |
+
|
20 |
+
img = imread(filename)
|
21 |
+
print('Image:', img.dtype, img.shape, (img.min(), img.max()), flush=True)
|
22 |
+
if model is None or len(str(model)) <= 0:
|
23 |
+
model = default_model
|
24 |
+
|
25 |
+
img = multi_norm(img, 'cstm-mix') # TODO
|
26 |
+
|
27 |
+
m = CpnInterface(model.strip(), device=device)
|
28 |
+
y = m(img, reduce_labels=reduce_labels)
|
29 |
+
|
30 |
+
labels = y['labels']
|
31 |
+
|
32 |
+
vis_labels = label_cmap(labels)
|
33 |
+
dst = '.'.join(filename.split('.')[:-1]) + '_labels.tiff'
|
34 |
+
imsave(dst, labels)
|
35 |
+
|
36 |
+
return img, vis_labels, dst
|
37 |
+
|
38 |
+
|
39 |
+
gr.Interface(
|
40 |
+
predict,
|
41 |
+
inputs=[gr.components.Image(label="Upload Input Image", type="filepath"),
|
42 |
+
gr.components.Textbox(label='Model Name', value=default_model, max_lines=1)],
|
43 |
+
outputs=[gr.Image(label="Processed Image"),
|
44 |
+
gr.Image(label="Label Image"),
|
45 |
+
gr.File(label="Download Label Image")],
|
46 |
+
title="Cell Detection with Contour Proposal Networks",
|
47 |
+
examples=get_examples(default_model)
|
48 |
+
).launch()
|
cpn.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import celldetection as cd
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
__all__ = ['contours2labels', 'CpnInterface']
|
7 |
+
|
8 |
+
|
9 |
+
def contours2labels(contours, size, overlap=False, max_iter=999):
|
10 |
+
labels = cd.data.contours2labels(cd.asnumpy(contours), size, initial_depth=3)
|
11 |
+
|
12 |
+
if not overlap:
|
13 |
+
kernel = cv2.getStructuringElement(1, (3, 3))
|
14 |
+
mask_sm = np.sum(labels > 0, axis=-1)
|
15 |
+
mask = mask_sm > 1 # all overlaps
|
16 |
+
if mask.any():
|
17 |
+
mask_ = mask_sm == 1 # all cores
|
18 |
+
lbl = np.zeros(labels.shape[:2], dtype='float64')
|
19 |
+
lbl[mask_] = labels.max(-1)[mask_]
|
20 |
+
for _ in range(max_iter):
|
21 |
+
lbl_ = np.copy(lbl)
|
22 |
+
m = mask & (lbl <= 0)
|
23 |
+
if not np.any(m):
|
24 |
+
break
|
25 |
+
lbl[m] = cv2.dilate(lbl, kernel=kernel)[m]
|
26 |
+
if np.allclose(lbl_, lbl):
|
27 |
+
break
|
28 |
+
else:
|
29 |
+
lbl = labels.max(-1)
|
30 |
+
labels = lbl.astype('int')
|
31 |
+
return labels
|
32 |
+
|
33 |
+
|
34 |
+
class CpnInterface:
|
35 |
+
def __init__(self, model, device=None):
|
36 |
+
self.device = ('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
37 |
+
self.model = cd.models.LitCpn(model).to(device)
|
38 |
+
self.model.eval()
|
39 |
+
self.tile_size = 768
|
40 |
+
self.overlap = 384
|
41 |
+
|
42 |
+
def __call__(
|
43 |
+
self,
|
44 |
+
img,
|
45 |
+
div=255,
|
46 |
+
reduce_labels=True,
|
47 |
+
return_labels=True,
|
48 |
+
return_viewable_contours=True,
|
49 |
+
):
|
50 |
+
if img.ndim == 2:
|
51 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
52 |
+
img = img / div
|
53 |
+
x = cd.data.to_tensor(img, transpose=True, dtype=torch.float32)[None]
|
54 |
+
with torch.no_grad():
|
55 |
+
out = cd.asnumpy(self.model(x, crop_size=self.tile_size,
|
56 |
+
stride=max(64, self.tile_size - self.overlap)))
|
57 |
+
|
58 |
+
contours, = out['contours']
|
59 |
+
boxes, = out['boxes']
|
60 |
+
scores, = out['scores']
|
61 |
+
|
62 |
+
labels = None
|
63 |
+
if return_labels or return_viewable_contours:
|
64 |
+
labels = contours2labels(contours, img.shape[:2], overlap=not reduce_labels)
|
65 |
+
|
66 |
+
return dict(
|
67 |
+
contours=contours,
|
68 |
+
labels=labels,
|
69 |
+
boxes=boxes,
|
70 |
+
scores=scores
|
71 |
+
)
|
prep.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import celldetection as cd
|
2 |
+
import numpy as np
|
3 |
+
from skimage import img_as_ubyte, exposure
|
4 |
+
from PIL import ImageFile
|
5 |
+
|
6 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
7 |
+
|
8 |
+
__all__ = ['normalize_img', 'normalize_channel', 'multi_norm']
|
9 |
+
|
10 |
+
|
11 |
+
def normalize_img(img, gamma_spread=17, lower_gamma_bound=.6, percentile=99.88):
|
12 |
+
log = []
|
13 |
+
if img.dtype.kind == 'f': # floats
|
14 |
+
if img.max() < 256:
|
15 |
+
img = img_as_ubyte(img / 255)
|
16 |
+
log.append('img_as_ubyte')
|
17 |
+
else:
|
18 |
+
v = 99.95
|
19 |
+
img = cd.data.normalize_percentile(img, v)
|
20 |
+
log.append(f'cd.data.normalize_percentile(img, {v})')
|
21 |
+
elif img.itemsize > 1:
|
22 |
+
img = cd.data.normalize_percentile(img, percentile)
|
23 |
+
log.append(f'cd.data.normalize_percentile(img, {percentile})')
|
24 |
+
mean_thresh = np.pi * gamma_spread
|
25 |
+
if img.mean() < mean_thresh:
|
26 |
+
gamma = (1 - ((np.cos(1 / gamma_spread * img.mean()) + 1) / 2)) * (1 - lower_gamma_bound) + lower_gamma_bound
|
27 |
+
log.append(f'(img / 255) ** {gamma}')
|
28 |
+
img = (img / 255) ** gamma
|
29 |
+
img = img_as_ubyte(img)
|
30 |
+
return img, log
|
31 |
+
|
32 |
+
|
33 |
+
def normalize_channel(img, lower=1, upper=99):
|
34 |
+
non_zero_vals = img[np.nonzero(img)]
|
35 |
+
percentiles = np.percentile(non_zero_vals, [lower, upper])
|
36 |
+
if percentiles[1] - percentiles[0] > 0.001:
|
37 |
+
img_norm = exposure.rescale_intensity(img, in_range=(percentiles[0], percentiles[1]), out_range='uint8')
|
38 |
+
else:
|
39 |
+
img_norm = img
|
40 |
+
return img_norm.astype(np.uint8)
|
41 |
+
|
42 |
+
|
43 |
+
def multi_norm(img, method):
|
44 |
+
if method == 'prov':
|
45 |
+
img = normalize_channel(img)
|
46 |
+
elif method == 'rand-mix' or method == 'cstm-mix':
|
47 |
+
img0 = normalize_channel(img)
|
48 |
+
img1, log = normalize_img(img)
|
49 |
+
if method == 'rand-mix':
|
50 |
+
alpha = np.random.uniform(0., 1.)
|
51 |
+
else:
|
52 |
+
is_grayscale = img.ndim == 2 or (img.ndim == 3 and img.shape[2] == 1)
|
53 |
+
alpha = 0.
|
54 |
+
if not is_grayscale:
|
55 |
+
if img[..., 2].mean() > 200 and img[..., 2].std() < 20:
|
56 |
+
alpha = 1.
|
57 |
+
else:
|
58 |
+
if img1.mean() < 45 and img1.std() < 33:
|
59 |
+
alpha = .5
|
60 |
+
img = np.clip(alpha * img0 + (1 - alpha) * img1, 0, 255).astype(img0.dtype)
|
61 |
+
else:
|
62 |
+
img, log = normalize_img(img)
|
63 |
+
return img
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
celldetection @ git+https://github.com/FZJ-INM1-BDA/celldetection.git
|
2 |
+
tifffile
|
util.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from imageio.v2 import imread as _imread
|
2 |
+
import tifffile as tif
|
3 |
+
|
4 |
+
__all__ = ['imread', 'imsave', 'get_examples']
|
5 |
+
|
6 |
+
|
7 |
+
def imread(filename):
|
8 |
+
if filename.split('.')[-1] in ('tiff', 'tif'):
|
9 |
+
return tif.imread(filename)
|
10 |
+
return _imread(filename)
|
11 |
+
|
12 |
+
|
13 |
+
def imsave(filename, img, compression="zlib"):
|
14 |
+
tif.imwrite(filename, img, compression=compression)
|
15 |
+
|
16 |
+
|
17 |
+
def get_examples(default_model):
|
18 |
+
from skimage import data
|
19 |
+
from os.path import dirname, join, isfile
|
20 |
+
|
21 |
+
examples = []
|
22 |
+
for f in ['coins.png']:
|
23 |
+
f = join(dirname(data.__file__), f)
|
24 |
+
if isfile(f):
|
25 |
+
examples.append([f, default_model])
|
26 |
+
if len(examples):
|
27 |
+
return examples
|