Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,152 Bytes
b362624 1c45a6c b362624 1c45a6c b362624 1c45a6c b362624 1c45a6c b362624 bf8488d b362624 1c45a6c b362624 1c45a6c b362624 f644682 5e15e63 b362624 1c45a6c b362624 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import torch
import einops
import gradio as gr
import datetime
import numpy as np
import spaces
import soundfile
import os
import sys
import zipfile
from pathlib import Path
from huggingface_hub import hf_hub_download
sys.path.append("sf-creator-fork")
from main import sfz, decentsampler
decoder_path = "erl-j/soundfont-generator-assets/decoder.pt"
model_path = "erl-j/soundfont-generator-assets/synth_lfm_modern_bfloat16.pt"
# Download models from Hugging Face Hub
decoder_path = hf_hub_download("erl-j/soundfont-generator-assets", "decoder.pt")
model_path = hf_hub_download(
"erl-j/soundfont-generator-assets", "synth_lfm_modern_bfloat16.pt"
)
# Load models once at startup
device = "cuda"
decoder = torch.load(decoder_path, map_location=device).half().eval()
model = torch.load(model_path, map_location=device).half().eval()
@spaces.GPU
def generate_and_export_soundfont(text, steps=20, instrument_name=None):
sample_start = datetime.datetime.now()
# Generate audio as before
z = model.sample(1, text=[text], steps=steps)
z_reshaped = einops.rearrange(z, "b t c d -> (b c) d t")
with torch.no_grad():
audio = decoder.decode(z_reshaped)
audio_output = einops.rearrange(audio, "b c t -> c (b t)").cpu().numpy()
audio_output = audio_output / np.max(np.abs(audio_output))
# Export individual wav files
export_audio = audio.cpu().numpy().astype(np.float32)
output_dir = "output"
os.makedirs(output_dir, exist_ok=True)
# Create instrument name if not provided
if not instrument_name:
instrument_name = text.replace(" ", "_")[:20]
# Save individual WAV files
pitches = [
"C1",
"F#1",
"C2",
"F#2",
"C3",
"F#3",
"C4",
"F#4",
"C5",
"F#5",
"C6",
"F#6",
"C7",
"F#7",
"C8",
]
wav_files = []
for i in range(audio.shape[0]):
wav_path = f"{output_dir}/{pitches[i]}.wav"
soundfile.write(wav_path, export_audio[i].T, 44100)
wav_files.append(wav_path)
# Generate SFZ file
sfz(
directory=output_dir,
lowkey="21",
highkey="108",
instrument=instrument_name,
loopmode="no_loop",
polyphony=None,
)
# Create zip file containing SFZ and WAV files for the complete soundfont
zip_path = f"{output_dir}/{instrument_name}_package.zip"
with zipfile.ZipFile(zip_path, "w") as zipf:
# Add SFZ file
sfz_file = f"{output_dir}/{instrument_name}.sfz"
zipf.write(sfz_file, os.path.basename(sfz_file))
# Add all WAV files
for wav_file in wav_files:
if os.path.exists(wav_file):
zipf.write(wav_file, os.path.basename(wav_file))
total_time = (datetime.datetime.now() - sample_start).total_seconds()
return (
(44100, audio_output.T),
f"Generation took {total_time:.2f}s\nFiles saved in {output_dir}",
zip_path,
wav_files,
)
custom_js = open("custom.js").read()
custom_css = open("custom.css").read()
demo = gr.Blocks(
title="Erl-j's Soundfont Generator",
theme=gr.themes.Default(
primary_hue="green",
font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"],
),
js=custom_js,
css=custom_css,
)
with demo:
gr.Markdown(open("intro.md").read())
with gr.Row():
steps = gr.Slider(
minimum=1, maximum=50, value=20, step=1, label="Generation steps"
)
with gr.Row():
text_input = gr.Textbox(
label="Prompt",
placeholder="Enter text description (e.g. 'hard bass', 'sparkly bells')",
lines=2,
)
with gr.Row():
generate_btn = gr.Button("Generate Soundfont", variant="primary")
with gr.Row():
audio_output = gr.Audio(label="Generated Audio Preview", visible=False)
status_output = gr.Textbox(label="Status", lines=2, visible=False)
with gr.Row():
wav_files = gr.File(
label="Individual WAV Files",
file_count="multiple",
visible=False,
elem_id="individual-wav-files",
)
html = """
<div id="custom-player"
style="width: 100%; height: 600px; border: 1px solid #f8f9fa; border-radius: 5px; margin-top: 10px;"
></div>
"""
gr.HTML(html, min_height=1000, max_height=1000)
gr.Markdown("## Download Soundfont Package here:")
with gr.Row():
sf = gr.File(
label="Download SFZ Soundfont Package",
type="filepath",
visible=True,
elem_id="sfz",
)
gr.Markdown("""
# About
The model is a modified version of [stable audio open](https://huggingface.co/stabilityai/stable-audio-open-1.0).
Unlike the original model, this version uses latent flow matching rather than latent diffusion.
Secondly, the pitches are stacked in a channel dimension rather than concatenated in the time dimension.
This allows for faster generation.
Soundfont export code is based on the [sf-creator](https://github.com/paulwellnerbou/sf-creator) project.
Similar work by Nercessian and Imort: [InstrumentGen](https://instrumentgen.netlify.app/).
Thank you @carlthome for coming up with the name.
To cite this work, please use the following BibTeX entry:
```bibtex
@misc{erl-j-soundfont-generator,
title={Erl-j's Soundfont Generator},
author={Nicolas Jonason},
year={2024},
publisher={Huggingface},
}
```
""")
generate_btn.click(
fn=generate_and_export_soundfont,
inputs=[text_input, steps],
outputs=[audio_output, status_output, sf, wav_files],
).success(js="() => console.log('Success')")
text_input.submit(
fn=generate_and_export_soundfont,
inputs=[text_input, steps],
outputs=[audio_output, status_output, sf, wav_files],
)
if __name__ == "__main__":
print("Starting demo...")
demo.launch()
|