Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,212 Bytes
b362624 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import torch
import pytorch_lightning as pl
from torch import nn
from tqdm import tqdm
import numpy as np
import einops
import wandb
import torch
# import wandb logging
from pytorch_lightning.loggers import WandbLogger
from stable_audio_tools import get_pretrained_model
from transformers import T5Tokenizer, T5EncoderModel
class SinActivation(nn.Module):
def forward(self, x):
return torch.sin(x)
class FourierFeatures(nn.Module):
def __init__(self, in_features, out_features, n_layers):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.n_layers = n_layers
layers = []
layers += [nn.Linear(in_features, out_features)]
# add sin activation
layers += [SinActivation()]
for i in range(n_layers-1):
layers += [nn.Linear(out_features, out_features)]
layers += [SinActivation()]
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
class FlowMatchingModule(pl.LightningModule):
def __init__(self, main_model=None, text_conditioner=None, max_tokens=128, n_channels=None, t_input=None):
super().__init__()
self.save_hyperparameters(ignore=['main_model', "text_conditioner"])
self.model = main_model.transformer
self.input_layer = main_model.transformer.project_in
self.output_layer = main_model.transformer.project_out
self.text_conditioner = text_conditioner
self.d_model = self.input_layer.weight.shape[0]
self.d_input = self.input_layer.weight.shape[1]
# use fourier features for schedule
self.schedule_embedding = FourierFeatures(1, self.d_model, 2)
# use learned positional encoding
self.pitch_embedding = nn.Parameter(torch.randn(n_channels, self.d_model))
# make embedding layer for tags
self.channels = n_channels
mean_proj = []
for layer in self.model.layers:
mean_proj += [nn.Linear(self.d_model, self.d_model)]
self.mean_proj = nn.ModuleList(mean_proj)
def get_example_inputs(self):
text = "A piano playing a C major chord"
conditioning, conditioning_mask = self.text_conditioner(text, device = self.device)
# repeat conditioning
conditioning = einops.repeat(conditioning, 'b t d-> b t c d', c=self.channels)
conditioning_mask = einops.repeat(conditioning_mask, 'b t -> b t c', c=self.channels)
t = torch.rand(1, device=self.device)
z = torch.randn(1, self.hparams.t_input ,self.hparams.n_channels, self.d_input , device=self.device)
return z, conditioning, conditioning_mask, t
def forward(self, x, conditioning, conditioning_mask, t):
batch, t_input, n_channels, d_input = x.shape
# add conditioning to x
x = self.input_layer(x)
tz = self.schedule_embedding(t[:,None,None,None])
pitch_z = self.pitch_embedding[None, None, :n_channels, :]
# print shapes
x = x + tz + pitch_z
rot = self.model.rotary_pos_emb.forward_from_seq_len(x.shape[1])
conditioning = einops.rearrange(conditioning, 'b t c d -> (b c) t d', c=self.channels)
conditioning_mask = einops.rearrange(conditioning_mask, 'b t c -> (b c) t', c=self.channels)
for layer_idx, layer in enumerate(self.model.layers):
x = einops.rearrange(x, 'b t c d -> (b c) t d')
x = layer(x, rotary_pos_emb=rot, context = conditioning, context_mask = conditioning_mask)
x = einops.rearrange(x, '(b c) t d -> b t c d', c=self.channels)
x_ch_mean = x.mean(dim=2)
x_ch_mean = self.mean_proj[layer_idx](x_ch_mean)
# non linearity
# x_ch_mean = torch.relu(x_ch_mean)
# # layer norm
# x_ch_mean = torch.layer_norm(x_ch_mean, x_ch_mean.shape[1:])
x += x_ch_mean[:, :, None, :]
x = self.output_layer(x)
return x
def step(self, batch, batch_idx):
x = batch["z"]
text = batch["text"]
conditioning, conditioning_mask = self.text_conditioner(text, device = self.device)
# repeat conditioning
conditioning = einops.repeat(conditioning, 'b t d-> b t c d', c=self.channels)
conditioning_mask = einops.repeat(conditioning_mask, 'b t -> b t c', c=self.channels)
x = einops.rearrange(x, 'b c d t -> b t c d')
z0 = torch.randn(x.shape, device=x.device)
z1 = x
t = torch.rand(x.shape[0], device=x.device)
zt = t[:,None,None,None] * z1 + (1 - t[:,None,None,None]) * z0
vt = self(zt,conditioning,conditioning_mask,t)
loss = (vt - (z1 - z0)).pow(2).mean()
return loss
@torch.inference_mode()
def sample(self, batch_size, text, steps=10, same_latent=False):
# Ensure model is on the correct device
device = next(self.parameters()).device
dtype = self.input_layer.weight.dtype
# Move conditioning to the correct device and dtype
conditioning, conditioning_mask = self.text_conditioner(text, device=device)
conditioning = einops.repeat(conditioning, "b t d-> b t c d", c=self.channels)
conditioning_mask = einops.repeat(
conditioning_mask, "b t -> b t c", c=self.channels
)
conditioning = conditioning.to(device=device, dtype=dtype)
conditioning_mask = conditioning_mask.to(device=device)
self.eval()
with torch.no_grad():
# Create initial noise on the correct device and dtype
z0 = torch.randn(
batch_size,
self.hparams.t_input,
self.hparams.n_channels,
self.d_input,
device=device,
dtype=dtype,
)
if same_latent:
z0 = z0[0].repeat(batch_size, 1, 1, 1)
zt = z0
for step in tqdm(range(steps)):
t = torch.tensor([step / steps], device=device, dtype=dtype)
zt = zt + (1 / steps) * self.forward(
zt, conditioning, conditioning_mask, t
)
return zt
def training_step(self, batch, batch_idx):
loss = self.step(batch, batch_idx)
self.log('trn_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
return loss
def validation_step(self, batch, batch_idx):
loss = self.step(batch, batch_idx)
self.log('val_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=1e-5)
class EncodedAudioDataset(torch.utils.data.Dataset):
def __init__(self, paths, pitch_range):
records = []
print("Loading data")
for path in tqdm(paths):
records+=torch.load(path)
self.records = records
self.pitch_range = pitch_range
# keep only records with z
self.records = [r for r in self.records if "z" in r]
print(f"Loaded {len(self.records)} records")
def compose_prompt(self,record):
title = record["name"] if "name" in record else record["title"]
tags = record["tags"]
# take tags
# shuffle
tags = np.random.choice(tags, len(tags), replace=False)
# take random number of tags
tags = list(tags[:np.random.randint(0, len(tags)+1)])
#
# take either the title or group or type or nothing
if "type_group" in record and "type" in record:
type_group = record["type_group"]
type = record["type"]
head = np.random.choice([title, type_group, type])
else:
head = np.random.choice([title])
# append tags
# with 75% chance add head
elements = tags
if np.random.rand() < 0.75:
elements = [head] + elements
# shuffle elements
elements = np.random.choice(elements, len(elements), replace=False)
prompt = " ".join(elements)
# make everything lowercase
prompt = prompt.lower()
return prompt
def __len__(self):
return len(self.records)
def __getitem__(self, idx):
return {
"z": self.records[idx]["z"][self.pitch_range[0]:self.pitch_range[1]],
"text": self.compose_prompt(self.records[idx])
}
def check_for_nans(self):
for r in self.records:
# check if z has nan values
if np.isnan(r["z"]).any():
raise ValueError("Nan values in z")
def get_z_shape(self):
shapes = [r["z"].shape for r in self.records]
# return unique shapes
return list(set(shapes))
if __name__ == "__main__":
# set seed
SEED = 0
torch.manual_seed(SEED)
BATCH_SIZE = 1
LATENT_T = 86
# initialize wandb logger
wandb.init()
logger = WandbLogger(project="synth_flow")
# don't log models
wandb.config.log_model = False
DATASET = "dataset_a"
if DATASET == "dataset_a":
PITCH_RANGE = [2,12]
trn_ds = EncodedAudioDataset([f"artefacts/synth_data_{i}.pt" for i in range(9)], PITCH_RANGE)
trn_ds.check_for_nans()
trn_dl = torch.utils.data.DataLoader(trn_ds, batch_size=BATCH_SIZE, shuffle=True)
val_ds = EncodedAudioDataset([f"artefacts/synth_data_9.pt"], PITCH_RANGE)
val_ds.check_for_nans()
val_dl = torch.utils.data.DataLoader(val_ds, batch_size=BATCH_SIZE, shuffle=True)
elif DATASET == "dataset_b":
PITCH_RANGE = [0,10]
trn_ds = EncodedAudioDataset([f"artefacts/synth_data_2_joined_{i}.pt" for i in range(3)], PITCH_RANGE)
trn_ds.check_for_nans()
trn_dl = torch.utils.data.DataLoader(trn_ds, batch_size=BATCH_SIZE, shuffle=True)
val_ds = EncodedAudioDataset([f"artefacts/synth_data_2_joined_3.pt"], PITCH_RANGE)
val_ds.check_for_nans()
val_dl = torch.utils.data.DataLoader(val_ds, batch_size=BATCH_SIZE, shuffle=True)
src_model = get_pretrained_model("stabilityai/stable-audio-open-1.0")[0].to("cpu")
src_model = src_model.to("cpu")
transformer_model = src_model.model.model
transformer_model = transformer_model.train()
text_conditioner = src_model.conditioner.conditioners.prompt
t5_version = "google-t5/t5-base"
lr_callback = pl.callbacks.LearningRateMonitor(logging_interval='step')
model = FlowMatchingModule(
main_model=transformer_model,
text_conditioner=text_conditioner,
n_channels=PITCH_RANGE[1] - PITCH_RANGE[0],
t_input=LATENT_T,
)
trainer = pl.Trainer(devices = [3], logger=logger, gradient_clip_val=1.0, callbacks=[lr_callback], max_epochs=1000, precision="16-mixed")
trainer.fit(model, trn_dl, val_dl, ckpt_path="synth_flow/9gzpz0i6/epoch=85-step=774000.ckpt")
# save checkpoint
trainer.save_checkpoint("artefacts/model_finetuned_2.ckpt")
|