Spaces:
Runtime error
Runtime error
import torch | |
import clip | |
import cv2, youtube_dl | |
from PIL import Image,ImageDraw, ImageFont | |
import wget | |
import os | |
from functools import partial | |
from multiprocessing.pool import Pool | |
import shutil | |
from pathlib import Path | |
import numpy as np | |
import datetime | |
import gradio as gr | |
# load model and preprocess | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model, preprocess = clip.load("ViT-B/32") | |
def select_video_format(url, ydl_opts={}, format_note='240p', ext='mp4', max_size = 500000000): | |
defaults = ['480p', '360p','240p','144p'] | |
ydl_opts = ydl_opts | |
ydl = youtube_dl.YoutubeDL(ydl_opts) | |
info_dict = ydl.extract_info(url, download=False) | |
formats = info_dict.get('formats', None) | |
# filter out formats we can't process | |
formats = [f for f in formats if f['ext'] == ext | |
and f['vcodec'].split('.')[0] != 'av01' | |
and f['filesize'] is not None and f['filesize'] <= max_size] | |
available_format_notes = set([f['format_note'] for f in formats]) | |
if format_note not in available_format_notes: | |
format_note = [d for d in defaults if d in available_format_notes][0] | |
formats = [f for f in formats if f['format_note'] == format_note] | |
format = formats[0] | |
format_id = format.get('format_id', None) | |
fps = format.get('fps', None) | |
print(f'format selected: {format}') | |
return(format, format_id, fps) | |
def download_video(url): | |
# create "videos" foder for saved videos | |
path_videos = Path('videos') | |
try: | |
path_videos.mkdir(parents=True) | |
except FileExistsError: | |
pass | |
# clear the "videos" folder | |
videos_to_keep = ['LPGUtKKO6F8', 'wJCXBGPo5c8','RicOR0oHATY'] | |
if len(list(path_videos.glob('*'))) > 10: | |
for path_video in path_videos.glob('*'): | |
if path_video.stem not in set(videos_to_keep): | |
path_video.unlink() | |
print(f'removed video {path_video}') | |
# select format to download for given video | |
# by default select 240p and .mp4 | |
try: | |
format, format_id, fps = select_video_format(url) | |
ydl_opts = { | |
'format':format_id, | |
'outtmpl': "videos/%(id)s.%(ext)s"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
try: | |
ydl.cache.remove() | |
meta = ydl.extract_info(url) | |
title = meta['title'] | |
thumb_url = meta['thumbnail'] | |
thumb_location = f"videos/{meta['id']}.{thumb_url.split('.')[-1]}" | |
wget.download(thumb_url, out=thumb_location) | |
save_location = 'videos/' + meta['id'] + '.' + meta['ext'] | |
except youtube_dl.DownloadError as error: | |
print(f'error with download_video function: {error}') | |
save_location = None | |
thumb_location = None | |
title = None | |
except IndexError as err: | |
print(f"can't find suitable video formats. we are not able to process video larger than 95 Mib at the moment") | |
fps, save_location, thumb_location, title = None, None, None, None | |
return(fps, save_location, thumb_location, title) | |
def process_video_parallel(video, skip_frames, dest_path, num_processes, process_number): | |
cap = cv2.VideoCapture(video) | |
frames_per_process = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) // (num_processes) | |
count = frames_per_process * process_number | |
cap.set(cv2.CAP_PROP_POS_FRAMES, count) | |
print(f"worker: {process_number}, process frames {count} ~ {frames_per_process * (process_number + 1)} \n total number of frames: {cap.get(cv2.CAP_PROP_FRAME_COUNT)} \n video: {video}; isOpen? : {cap.isOpened()}") | |
while count < frames_per_process * (process_number + 1) : | |
ret, frame = cap.read() | |
if not ret: | |
break | |
if count % skip_frames ==0: | |
filename =f"{dest_path}/{count}.jpg" | |
cv2.imwrite(filename, frame) | |
count += 1 | |
cap.release() | |
def vid2frames(url, sampling_interval=1): | |
# create folder for extracted frames - if folder exists, delete and create a new one | |
path_frames = Path('frames') | |
try: | |
path_frames.mkdir(parents=True) | |
except FileExistsError: | |
shutil.rmtree(path_frames) | |
path_frames.mkdir(parents=True) | |
# download the video | |
fps, video, thumb, title = download_video(url) | |
if video is not None: | |
if fps is None: fps = 30 | |
skip_frames = int(fps * sampling_interval) | |
print(f'video saved at: {video}, fps:{fps}, skip_frames: {skip_frames}') | |
# extract video frames at given sampling interval with multiprocessing - | |
n_workers = min(os.cpu_count(), 12) | |
print(f'now extracting frames with {n_workers} process...') | |
with Pool(n_workers) as pool: | |
pool.map(partial(process_video_parallel, video, skip_frames, path_frames, n_workers), range(n_workers)) | |
else: | |
skip_frames, path_frames = None, None | |
return(title, thumb, skip_frames, path_frames) | |
def captioned_strip(images, caption=None, times=None, rows=1): | |
increased_h = 0 if caption is None else 30 | |
w, h = images[0].size[0], images[0].size[1] | |
img = Image.new("RGB", (len(images) * w // rows, h * rows + increased_h)) | |
for i, img_ in enumerate(images): | |
img.paste(img_, (i // rows * w, increased_h + (i % rows) * h)) | |
if caption is not None: | |
draw = ImageDraw.Draw(img) | |
font = ImageFont.truetype( | |
"/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 16 | |
) | |
font_small = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 12) | |
draw.text((60, 3), caption, (255, 255, 255), font=font) | |
for i,ts in enumerate(times): | |
draw.text(( | |
(i // rows) * w + 40 , #column poistion | |
i % rows * h + 33) # row position | |
, ts, | |
(255, 255, 255), font=font_small) | |
return img | |
def run_inference(url, sampling_interval, bs=526): | |
title, thumb, skip_frames, path_frames= vid2frames(url,sampling_interval) | |
print(f"searching {title}") | |
if path_frames is not None: | |
filenames = sorted(path_frames.glob('*.jpg'),key=lambda p: int(p.stem)) | |
n_frames = len(filenames) | |
bs = min(n_frames,bs) | |
print(f"extracted {n_frames} frames, now encoding images") | |
# encoding images one batch at a time, combine all batch outputs -> image_features, size n_frames x 512 | |
image_features = torch.empty(size=(n_frames, 512),dtype=torch.float32).to(device) | |
print(f"encoding images, batch size :{bs} ; number of batches: {len(range(0, n_frames,bs))}") | |
for b in range(0, n_frames,bs): | |
images = [] | |
# loop through all frames in the batch -> create batch_image_input, size bs x 3 x 224 x 224 | |
for filename in filenames[b:b+bs]: | |
image = Image.open(filename).convert("RGB") | |
images.append(preprocess(image)) | |
batch_image_input = torch.tensor(np.stack(images)).to(device) | |
# encoding batch_image_input -> batch_image_features | |
with torch.no_grad(): | |
batch_image_features = model.encode_image(batch_image_input) | |
batch_image_features /= batch_image_features.norm(dim=-1, keepdim=True) | |
# add encoded image embedding to image_features | |
image_features[b:b+bs] = batch_image_features | |
# encoding search query | |
print(f'encoding search query') | |
thumb = Image.open(thumb).convert("RGB") | |
batch_thumb = torch.tensor(np.stack([preprocess(thumb)])).to(device) | |
with torch.no_grad(): | |
thumb_features = model.encode_image(batch_thumb).to(dtype=torch.float32) | |
thumb_features /= thumb_features.norm(dim=-1, keepdim=True) | |
similarity = (100.0 * image_features @ thumb_features.T) | |
values, indices = similarity.topk(4, dim=0) | |
print(f"indices for best matches{indices}") | |
print(f"filenames for best matches {[filenames[i]for i in indices]}") | |
best_frames = [Image.open(filenames[ind]).convert("RGB") for ind in indices] | |
times = [f'{datetime.timedelta(seconds = round(ind[0].item() * sampling_interval,2))}' for ind in indices] | |
image_output = captioned_strip(best_frames,title, times,2) | |
print('task complete') | |
else: | |
title = "not able to download video" | |
thumb = 0 | |
image_output = None | |
return(title, thumb, image_output) | |
inputs = [gr.inputs.Textbox(label="Give us the link to your youtube video! (maximum size 50 MB)"), | |
gr.Number(1,label='sampling interval (seconds)')] | |
outputs = [ | |
gr.outputs.HTML(label=""), # To be used as title | |
gr.outputs.Image(label="Original thumbnail"), | |
gr.outputs.Image(label="Top matches in the video"), | |
] | |
article = "Adapted from [It Happened One Frame](https://huggingface.co/spaces/YiYiXu/it-happened-one-frame-2)." | |
gr.Interface( | |
run_inference, | |
inputs=inputs, | |
outputs=outputs, | |
title="Locate YouTube Thumbnail In Video", | |
description='A CLIP-based app that find the YouTube video frame that matches its thumbnail.', | |
article = article, | |
examples=[ | |
['https://youtu.be/LPGUtKKO6F8', 1], | |
['https://youtu.be/wJCXBGPo5c8', 1], | |
['https://youtu.be/RicOR0oHATY', 1] | |
] | |
).launch(debug=True,enable_queue=True,share=True) | |