Spaces:
Running
Running
Avijit Ghosh
commited on
Commit
·
15af994
1
Parent(s):
a8356e2
More prettification
Browse files
app.py
CHANGED
@@ -72,10 +72,11 @@ def showmodal(evt: gr.SelectData):
|
|
72 |
authormd = gr.Markdown("",visible=False)
|
73 |
tagsmd = gr.Markdown("",visible=False)
|
74 |
abstractmd = gr.Markdown("",visible=False)
|
|
|
75 |
modelsmd = gr.Markdown("",visible=False)
|
76 |
datasetmd = gr.Markdown("",visible=False)
|
77 |
gallery = gr.Gallery([],visible=False)
|
78 |
-
if evt.index[1] ==
|
79 |
modal = Modal(visible=True)
|
80 |
itemdic = metadata_dict[evt.value]
|
81 |
|
@@ -98,6 +99,9 @@ def showmodal(evt: gr.SelectData):
|
|
98 |
|
99 |
if pd.notnull(itemdic['Abstract']):
|
100 |
abstractmd = gr.Markdown(itemdic['Abstract'],visible=True)
|
|
|
|
|
|
|
101 |
|
102 |
if pd.notnull(itemdic['Datasets']):
|
103 |
datasetmd = gr.Markdown('#### [Dataset]('+itemdic['Datasets']+')',visible=True)
|
@@ -107,7 +111,7 @@ def showmodal(evt: gr.SelectData):
|
|
107 |
if len(screenshots) > 0:
|
108 |
gallery = gr.Gallery(screenshots, visible=True, height=500, object_fit="scale-down", interactive=False, show_share_button=False)
|
109 |
|
110 |
-
return [modal, titlemd, authormd, tagsmd, abstractmd, modelsmd, datasetmd, gallery]
|
111 |
|
112 |
with gr.Blocks(title = "Social Impact Measurement V2", css=custom_css, theme=gr.themes.Base()) as demo: #theme=gr.themes.Soft(),
|
113 |
# create tabs for the app, moving the current table to one titled "rewardbench" and the benchmark_text to a tab called "About"
|
@@ -128,7 +132,7 @@ The following categories are high-level, non-exhaustive, and present a synthesis
|
|
128 |
with gr.Tabs(elem_classes="tab-buttons") as tabs1:
|
129 |
with gr.TabItem("Bias/Stereolevels"):
|
130 |
fulltable = globaldf[globaldf['Group'] == 'BiasEvals']
|
131 |
-
fulltable = fulltable[['Modality','Level', 'Suggested Evaluation', 'What it is evaluating', '
|
132 |
|
133 |
gr.Markdown("""
|
134 |
Generative AI systems can perpetuate harmful biases from various sources, including systemic, human, and statistical biases. These biases, also known as "fairness" considerations, can manifest in the final system due to choices made throughout the development process. They include harmful associations and stereolevels related to protected classes, such as race, gender, and sexuality. Evaluating biases involves assessing correlations, co-occurrences, sentiment, and toxicity across different modalities, both within the model itself and in the outputs of downstream tasks.
|
@@ -158,16 +162,18 @@ The following categories are high-level, non-exhaustive, and present a synthesis
|
|
158 |
authormd = gr.Markdown(visible=False)
|
159 |
tagsmd = gr.Markdown(visible=False)
|
160 |
abstractmd = gr.Markdown(visible=False)
|
161 |
-
gr.Markdown("## Construct Validity
|
162 |
-
|
163 |
-
gr.Markdown(
|
164 |
-
gr.Markdown(
|
|
|
|
|
165 |
modelsmd = gr.Markdown(visible=False)
|
166 |
datasetmd = gr.Markdown(visible=False)
|
167 |
-
gr.Markdown("## Results
|
168 |
-
|
169 |
gallery = gr.Gallery(visible=False)
|
170 |
-
table_filtered.select(showmodal, None, [modal, titlemd, authormd, tagsmd, abstractmd, modelsmd, datasetmd, gallery])
|
171 |
|
172 |
|
173 |
|
|
|
72 |
authormd = gr.Markdown("",visible=False)
|
73 |
tagsmd = gr.Markdown("",visible=False)
|
74 |
abstractmd = gr.Markdown("",visible=False)
|
75 |
+
considerationsmd = gr.Markdown("",visible=False)
|
76 |
modelsmd = gr.Markdown("",visible=False)
|
77 |
datasetmd = gr.Markdown("",visible=False)
|
78 |
gallery = gr.Gallery([],visible=False)
|
79 |
+
if evt.index[1] == 4:
|
80 |
modal = Modal(visible=True)
|
81 |
itemdic = metadata_dict[evt.value]
|
82 |
|
|
|
99 |
|
100 |
if pd.notnull(itemdic['Abstract']):
|
101 |
abstractmd = gr.Markdown(itemdic['Abstract'],visible=True)
|
102 |
+
|
103 |
+
if pd.notnull(itemdic['Considerations']):
|
104 |
+
considerationsmd = gr.Markdown('<strong>Considerations: </strong>'+ itemdic['Considerations'],visible=True)
|
105 |
|
106 |
if pd.notnull(itemdic['Datasets']):
|
107 |
datasetmd = gr.Markdown('#### [Dataset]('+itemdic['Datasets']+')',visible=True)
|
|
|
111 |
if len(screenshots) > 0:
|
112 |
gallery = gr.Gallery(screenshots, visible=True, height=500, object_fit="scale-down", interactive=False, show_share_button=False)
|
113 |
|
114 |
+
return [modal, titlemd, authormd, tagsmd, abstractmd, considerationsmd, modelsmd, datasetmd, gallery]
|
115 |
|
116 |
with gr.Blocks(title = "Social Impact Measurement V2", css=custom_css, theme=gr.themes.Base()) as demo: #theme=gr.themes.Soft(),
|
117 |
# create tabs for the app, moving the current table to one titled "rewardbench" and the benchmark_text to a tab called "About"
|
|
|
132 |
with gr.Tabs(elem_classes="tab-buttons") as tabs1:
|
133 |
with gr.TabItem("Bias/Stereolevels"):
|
134 |
fulltable = globaldf[globaldf['Group'] == 'BiasEvals']
|
135 |
+
fulltable = fulltable[['Modality','Level', 'Suggested Evaluation', 'What it is evaluating', 'Link']]
|
136 |
|
137 |
gr.Markdown("""
|
138 |
Generative AI systems can perpetuate harmful biases from various sources, including systemic, human, and statistical biases. These biases, also known as "fairness" considerations, can manifest in the final system due to choices made throughout the development process. They include harmful associations and stereolevels related to protected classes, such as race, gender, and sexuality. Evaluating biases involves assessing correlations, co-occurrences, sentiment, and toxicity across different modalities, both within the model itself and in the outputs of downstream tasks.
|
|
|
162 |
authormd = gr.Markdown(visible=False)
|
163 |
tagsmd = gr.Markdown(visible=False)
|
164 |
abstractmd = gr.Markdown(visible=False)
|
165 |
+
gr.Markdown("""## Construct Validity<br>
|
166 |
+
### How well it measures the concept it was designed to evaluate""", visible=True)
|
167 |
+
# gr.Markdown("### What it is evaluating", visible=True)
|
168 |
+
considerationsmd = gr.Markdown(visible=False)
|
169 |
+
gr.Markdown("""## Resources<br>
|
170 |
+
### What you need to do this evaluation""", visible=True)
|
171 |
modelsmd = gr.Markdown(visible=False)
|
172 |
datasetmd = gr.Markdown(visible=False)
|
173 |
+
gr.Markdown("""## Results<br>
|
174 |
+
### Available evaluation results""", visible=True)
|
175 |
gallery = gr.Gallery(visible=False)
|
176 |
+
table_filtered.select(showmodal, None, [modal, titlemd, authormd, tagsmd, abstractmd, considerationsmd, modelsmd, datasetmd, gallery])
|
177 |
|
178 |
|
179 |
|