|
import os |
|
import torch |
|
import librosa |
|
import numpy as np |
|
import gradio as gr |
|
import pyopenjtalk |
|
from util import preprocess_input, postprocess_phn, get_tokenizer, load_pitch_dict, get_pinyin |
|
|
|
from espnet_model_zoo.downloader import ModelDownloader |
|
from espnet2.bin.svs_inference import SingingGenerate |
|
|
|
|
|
singer_embeddings = { |
|
"Model①(Chinese)-zh": { |
|
"singer1 (male)": 1, |
|
"singer2 (female)": 12, |
|
"singer3 (male)": 23, |
|
"singer4 (female)": 29, |
|
"singer5 (male)": 18, |
|
"singer6 (female)": 8, |
|
"singer7 (male)": 25, |
|
"singer8 (female)": 5, |
|
"singer9 (male)": 10, |
|
"singer10 (female)": 15, |
|
}, |
|
"Model②(Multilingual)-zh": { |
|
"singer1 (male)": "resource/singer/singer_embedding_ace-1.npy", |
|
"singer2 (female)": "resource/singer/singer_embedding_ace-2.npy", |
|
"singer3 (male)": "resource/singer/singer_embedding_ace-3.npy", |
|
"singer4 (female)": "resource/singer/singer_embedding_ace-8.npy", |
|
"singer5 (male)": "resource/singer/singer_embedding_ace-7.npy", |
|
"singer6 (female)": "resource/singer/singer_embedding_itako.npy", |
|
"singer7 (male)": "resource/singer/singer_embedding_ofuton.npy", |
|
"singer8 (female)": "resource/singer/singer_embedding_kising_orange.npy", |
|
"singer9 (male)": "resource/singer/singer_embedding_m4singer_Tenor-1.npy", |
|
"singer10 (female)": "resource/singer/singer_embedding_m4singer_Alto-4.npy", |
|
}, |
|
"Model②(Multilingual)-jp": { |
|
"singer1 (male)": "resource/singer/singer_embedding_ace-1.npy", |
|
"singer2 (female)": "resource/singer/singer_embedding_ace-2.npy", |
|
"singer3 (male)": "resource/singer/singer_embedding_ace-3.npy", |
|
"singer4 (female)": "resource/singer/singer_embedding_ace-8.npy", |
|
"singer5 (male)": "resource/singer/singer_embedding_ace-7.npy", |
|
"singer6 (female)": "resource/singer/singer_embedding_itako.npy", |
|
"singer7 (male)": "resource/singer/singer_embedding_ofuton.npy", |
|
"singer8 (female)": "resource/singer/singer_embedding_kising_orange.npy", |
|
"singer9 (male)": "resource/singer/singer_embedding_m4singer_Tenor-1.npy", |
|
"singer10 (female)": "resource/singer/singer_embedding_m4singer_Alto-4.npy", |
|
}, |
|
} |
|
|
|
model_dict = { |
|
"Model①(Chinese)-zh": "espnet/aceopencpop_svs_visinger2_40singer_pretrain", |
|
"Model②(Multilingual)-zh": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained", |
|
"Model②(Multilingual)-jp": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained", |
|
} |
|
|
|
total_singers = list(singer_embeddings["Model②(Multilingual)-zh"].keys()) |
|
|
|
langs = { |
|
"zh": 2, |
|
"jp": 1, |
|
} |
|
|
|
predictor = torch.hub.load("South-Twilight/SingMOS:v0.2.0", "singing_ssl_mos", trust_repo=True) |
|
exist_model = "Null" |
|
svs = None |
|
|
|
def gen_song(model_name, spk, texts, durs, pitchs): |
|
fs = 44100 |
|
tempo = 120 |
|
lang = model_name.split("-")[-1] |
|
PRETRAIN_MODEL = model_dict[model_name] |
|
if texts is None: |
|
return (fs, np.array([0.0])), "Error: No Text provided!" |
|
if durs is None: |
|
return (fs, np.array([0.0])), "Error: No Dur provided!" |
|
if pitchs is None: |
|
return (fs, np.array([0.0])), "Error: No Pitch provided!" |
|
|
|
|
|
if lang == "zh": |
|
texts = preprocess_input(texts, "") |
|
text_list = get_pinyin(texts) |
|
elif lang == "jp": |
|
texts = preprocess_input(texts, " ") |
|
text_list = texts.strip().split() |
|
durs = preprocess_input(durs, " ") |
|
dur_list = durs.strip().split() |
|
pitchs = preprocess_input(pitchs, " ") |
|
pitch_list = pitchs.strip().split() |
|
|
|
if len(text_list) != len(dur_list): |
|
return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with duration({len(dur_list)})!" |
|
if len(text_list) != len(pitch_list): |
|
return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with pitch({len(pitch_list)})!" |
|
|
|
|
|
tokenizer = get_tokenizer(model_name, lang) |
|
sybs = [] |
|
for text in text_list: |
|
if text == "AP" or text == "SP": |
|
rev = [text] |
|
elif text == "-" or text == "——": |
|
rev = [text] |
|
else: |
|
rev = tokenizer(text) |
|
if rev == False: |
|
return (fs, np.array([0.0])), f"Error: text `{text}` is invalid!" |
|
rev = postprocess_phn(rev, model_name, lang) |
|
phns = "_".join(rev) |
|
sybs.append(phns) |
|
|
|
pitch_dict = load_pitch_dict() |
|
|
|
labels = [] |
|
notes = [] |
|
st = 0 |
|
pre_phn = "" |
|
for phns, dur, pitch in zip(sybs, dur_list, pitch_list): |
|
if phns == "-" or phns == "——": |
|
phns = pre_phn |
|
if pitch not in pitch_dict: |
|
return (fs, np.array([0.0])), f"Error: pitch `{pitch}` is invalid!" |
|
pitch = pitch_dict[pitch] |
|
phn_list = phns.split("_") |
|
lyric = "".join(phn_list) |
|
dur = float(dur) |
|
note = [st, st + dur, lyric, pitch, phns] |
|
st += dur |
|
notes.append(note) |
|
for phn in phn_list: |
|
labels.append(phn) |
|
pre_phn = labels[-1] |
|
|
|
phns_str = " ".join(labels) |
|
batch = { |
|
"score": ( |
|
int(tempo), |
|
notes, |
|
), |
|
"text": phns_str, |
|
} |
|
print(batch) |
|
|
|
|
|
|
|
global exist_model |
|
global svs |
|
if exist_model == "Null" or exist_model != model_name: |
|
device = "cpu" |
|
|
|
d = ModelDownloader() |
|
pretrain_downloaded = d.download_and_unpack(PRETRAIN_MODEL) |
|
svs = SingingGenerate( |
|
train_config = pretrain_downloaded["train_config"], |
|
model_file = pretrain_downloaded["model_file"], |
|
device = device |
|
) |
|
exist_model = model_name |
|
if model_name == "Model①(Chinese)-zh": |
|
sid = np.array([singer_embeddings[model_name][spk]]) |
|
output_dict = svs(batch, sids=sid) |
|
else: |
|
lid = np.array([langs[lang]]) |
|
spk_embed = np.load(singer_embeddings[model_name][spk]) |
|
output_dict = svs(batch, lids=lid, spembs=spk_embed) |
|
wav_info = output_dict["wav"].cpu().numpy() |
|
|
|
|
|
global predictor |
|
wav_mos = librosa.resample(wav_info, orig_sr=fs, target_sr=16000) |
|
wav_mos = torch.from_numpy(wav_mos).unsqueeze(0) |
|
len_mos = torch.tensor([wav_mos.shape[1]]) |
|
score = predictor(wav_mos, len_mos) |
|
return (fs, wav_info), "success!", round(score.item(), 2) |
|
|
|
|
|
|
|
examples = [ |
|
["Model①(Chinese)-zh", "singer1 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "60 62 62 62 0 62 58 0\n58 58 0 58 58 63 0"], |
|
["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C4 D4 D4 D4 rest D4 A#3 rest\nA#3 A#3 rest A#3 A#3 D#4 rest"], |
|
["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C#4 D#4 D#4 D#4 rest D#4 B3 rest\nB3 B3 rest B3 B3 E4 rest"], |
|
["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 大 地 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C4 D4 D4 D4 rest D4 A#3 rest\nA#3 A#3 rest A#3 A#3 D#4 rest"], |
|
["Model②(Multilingual)-zh", "singer3 (male)", "你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.11 0.33 0.29 0.13 0.15 0.48\n0.24 0.18 0.34 0.15 0.27 0.28 0.63 0.44", "63 63 63 63 0 63\n62 62 62 63 65 63 62 0"], |
|
["Model②(Multilingual)-zh", "singer3 (male)", "你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.23 0.66 0.58 0.27 0.3 0.97\n0.48 0.36 0.69 0.3 0.53 0.56 1.27 0.89", "63 63 63 63 0 63\n62 62 62 63 65 63 62 0"], |
|
["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP\n你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34\n0.11 0.33 0.29 0.13 0.15 0.48\n0.24 0.18 0.34 0.15 0.27 0.28 0.63 0.44", "60 62 62 62 0 62 58 0\n58 58 0 58 58 63 0\n63 63 63 63 0 63\n62 62 62 63 65 63 62 0"], |
|
["Model①(Chinese)-zh", "singer3 (male)", "修 炼 爱 情 的 心 酸 SP AP", "0.42 0.21 0.19 0.28 0.22 0.33 1.53 0.1 0.29", "68 70 68 66 63 68 68 0 0"], |
|
["Model①(Chinese)-zh", "singer3 (male)", "学 会 放 好 以 前 的 渴 望 SP AP", "0.3 0.22 0.29 0.27 0.25 0.44 0.54 0.29 1.03 0.08 0.39", "68 70 68 66 61 68 68 65 66 0 0"], |
|
["Model①(Chinese)-zh", "singer3 (male)", "SP 我 不 - 是 一 定 要 你 回 - 来 SP", "0.37 0.45 0.47 0.17 0.52 0.28 0.46 0.31 0.44 0.45 0.2 2.54 0.19", "0 51 60 61 59 59 57 57 59 60 61 59 0"], |
|
["Model①(Chinese)-zh", "singer4 (female)", "AP 我 多 想 再 见 你\n哪 怕 匆 - 匆 一 AP 眼 就 别 离 AP", "0.13 0.24 0.68 0.78 0.86 0.4 0.94 0.54 0.3 0.56 0.16 0.86 0.26 0.22 0.28 0.78 0.68 1.5 0.32", "0 57 66 63 63 63 63 60 61 61 63 66 66 0 61 61 59 58 0"], |
|
["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "0.6 0.3 0.3 0.3 0.3 0.6 0.6 0.3 0.3 0.6 0.23", "60 60 60 56 56 56 55 55 55 53 56"], |
|
["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "0.6 0.3 0.3 0.3 0.3 0.6 0.6 0.3 0.3 0.6 0.23", "62 62 62 58 58 58 57 57 57 55 58"], |
|
["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "1.2 0.6 0.6 0.6 0.6 1.2 1.2 0.6 0.6 1.2 0.45", "60 60 60 56 56 56 55 55 55 53 56"], |
|
["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "0.3 0.15 0.15 0.15 0.15 0.3 0.3 0.15 0.15 0.3 0.11", "60 60 60 56 56 56 55 55 55 53 56"], |
|
["Model②(Multilingual)-jp", "singer8 (female)", "きっ と と べ ば そ ら ま で と ど く AP", "0.39 2.76 0.2 0.2 0.39 0.39 0.2 0.2 0.39 0.2 0.2 0.59 1.08", "64 71 68 69 71 71 69 68 66 68 69 68 0"], |
|
["Model②(Multilingual)-jp", "singer8 (female)", "じゃ の め で お む か え う れ し い な", "0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.65", "60 60 60 62 64 67 69 69 64 64 64 62 60"], |
|
["Model②(Multilingual)-jp", "singer10 (female)", "お と め わ ら い か ふぁ い や ら い か ん な い す ぶ ろ うぃ ん ぶ ろ うぃ ん い ん ざ うぃ ん", "0.15 0.15 0.15 0.15 0.3 0.15 0.3 0.15 0.15 0.3 0.07 0.07 0.15 0.15 0.15 0.15 0.15 0.15 0.45 0.07 0.07 0.07 0.38 0.07 0.07 0.15 0.15 0.3 0.15 0.15", "67 67 67 67 67 67 69 67 67 69 67 67 64 64 64 64 64 64 62 64 64 62 62 64 64 62 62 59 59 59"], |
|
] |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
""" |
|
<h1 align="center"> Demo of Singing Voice Synthesis in Muskits-ESPnet </h1> |
|
|
|
<div style="font-size: 20px;"> |
|
This is the demo page of our toolkit <a href="https://arxiv.org/abs/2409.07226"><b>Muskits-ESPnet: A Comprehensive Toolkit for Singing Voice Synthesis in New Paradigm</b></a>. |
|
|
|
Singing Voice Synthesis (SVS) takes a music score as input and generates singing vocal with the voice of a specific singer. |
|
|
|
Music score usually includes lyrics, as well as duration and pitch of each word in lyrics, |
|
|
|
<h2>How to use:</h2> |
|
<ol> |
|
<li><b>Choose Model-Language</b>: |
|
<ul> |
|
<li>Choose "zh" for Chinese lyrics input or "jp" for Japanese lyrics input.</li> |
|
<li>For example, "Model②(Mulitlingual)-zh" means model "Model②(Multilingual)" with lyrics input in Chinese.</li> |
|
</ul> |
|
</li> |
|
<li><b>[Optional] Choose Singer</b>: Choose a singer from the drop-down menu.</li> |
|
<li><b>Input lyrics</b>: |
|
<ul> |
|
<li>Input Chinese characters for "zh" and hiragana for "jp".</li> |
|
<li>You may include special symbols: 'AP' for breath, 'SP' for silence, and '-' for slur (Chinese lyrics only).</li> |
|
<li>Separate each lyric by either a space (' ') or a newline ('\\n') (no quotation marks needed).</li> |
|
</ul> |
|
</li> |
|
<li><b>Input durations</b>: |
|
<ul> |
|
<li>Input durations as float numbers.</li> |
|
<li>The durations sequence should <b>match the lyric sequence in length</b>, with each duration aligned to a lyric.</li> |
|
<li>Separate each duration by a space (' ') or a newline ('\\n') (no quotation marks needed).</li> |
|
</ul> |
|
</li> |
|
<li><b>Input pitches</b>: |
|
<ul> |
|
<li>Input MIDI note names or MIDI note numbers (e.g., MIDI note name "69" represents the MIDI note number "A4", and others follow accordingly).</li> |
|
<li>The pitch sequence should <b>match the lyric sequence in length</b>, with each pitch corresponding to a lyric.</li> |
|
<li>Separate each duration by a space (' ') or a newline ('\\n') (no quotation marks needed).</li> |
|
</ul> |
|
</li> |
|
<li><b>Hit "Generate" and listen</b>: |
|
<ul> |
|
<li>"Running Status" shows the status of singing generatation. If any error exists, it will show the error information.</li> |
|
<li>"Pseudo MOS" represents predicted mean opinion score for the generated song.</li> |
|
</ul> |
|
</li> |
|
</ol> |
|
</div> |
|
|
|
<h2>Notice:</h2> |
|
<ul> |
|
<li> Plenty of exmpales are provided. </li> |
|
<li> Extreme values may result in suboptimal generation quality! </li> |
|
</ul> |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(variant="panel"): |
|
model_name = gr.Radio( |
|
label="Model-Language", |
|
choices=[ |
|
"Model①(Chinese)-zh", |
|
"Model②(Multilingual)-zh", |
|
"Model②(Multilingual)-jp", |
|
], |
|
) |
|
|
|
with gr.Column(variant="panel"): |
|
singer = gr.Dropdown( |
|
label="Singer", |
|
choices=total_singers, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(variant="panel"): |
|
lyrics = gr.Textbox(label="Lyrics") |
|
duration = gr.Textbox(label="Duration") |
|
pitch = gr.Textbox(label="Pitch") |
|
generate = gr.Button("Generate") |
|
with gr.Column(variant="panel"): |
|
gened_song = gr.Audio(label="Generated Song", type="numpy") |
|
run_status = gr.Textbox(label="Running Status") |
|
pred_mos = gr.Textbox(label=" Pseudo MOS") |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=[model_name, singer, lyrics, duration, pitch], |
|
outputs=[singer], |
|
label="Examples", |
|
examples_per_page=20, |
|
) |
|
|
|
gr.Markdown(""" |
|
<div style='margin:20px auto;'> |
|
|
|
<p>References: <a href="https://arxiv.org/abs/2409.07226">Muskits-ESPnet paper</a> | |
|
<a href="https://github.com/espnet/espnet">espnet</a> | |
|
<a href="https://huggingface.co/espnet/aceopencpop_svs_visinger2_40singer_pretrain">Model①(Chinese)</a> | |
|
<a href="https://huggingface.co/espnet/mixdata_svs_visinger2_spkembed_lang_pretrained">Model②(Multilingual)</a> | |
|
<a href="https://github.com/South-Twilight/SingMOS">SingMOS</a></p> |
|
|
|
</div> |
|
""" |
|
) |
|
|
|
generate.click( |
|
fn=gen_song, |
|
inputs=[model_name, singer, lyrics, duration, pitch], |
|
outputs=[gened_song, run_status, pred_mos], |
|
) |
|
|
|
demo.launch() |
|
|