svs / app.py
TangRain's picture
add ref link for mos prediction
9dd50f5
raw
history blame
16.3 kB
import os
import torch
import librosa
import numpy as np
import gradio as gr
import pyopenjtalk
from util import preprocess_input, postprocess_phn, get_tokenizer, load_pitch_dict, get_pinyin
from espnet_model_zoo.downloader import ModelDownloader
from espnet2.bin.svs_inference import SingingGenerate
singer_embeddings = {
"Model①(Chinese)-zh": {
"singer1 (male)": 1,
"singer2 (female)": 12,
"singer3 (male)": 23,
"singer4 (female)": 29,
"singer5 (male)": 18,
"singer6 (female)": 8,
"singer7 (male)": 25,
"singer8 (female)": 5,
"singer9 (male)": 10,
"singer10 (female)": 15,
},
"Model②(Multilingual)-zh": {
"singer1 (male)": "resource/singer/singer_embedding_ace-1.npy",
"singer2 (female)": "resource/singer/singer_embedding_ace-2.npy",
"singer3 (male)": "resource/singer/singer_embedding_ace-3.npy",
"singer4 (female)": "resource/singer/singer_embedding_ace-8.npy",
"singer5 (male)": "resource/singer/singer_embedding_ace-7.npy",
"singer6 (female)": "resource/singer/singer_embedding_itako.npy",
"singer7 (male)": "resource/singer/singer_embedding_ofuton.npy",
"singer8 (female)": "resource/singer/singer_embedding_kising_orange.npy",
"singer9 (male)": "resource/singer/singer_embedding_m4singer_Tenor-1.npy",
"singer10 (female)": "resource/singer/singer_embedding_m4singer_Alto-4.npy",
},
"Model②(Multilingual)-jp": {
"singer1 (male)": "resource/singer/singer_embedding_ace-1.npy",
"singer2 (female)": "resource/singer/singer_embedding_ace-2.npy",
"singer3 (male)": "resource/singer/singer_embedding_ace-3.npy",
"singer4 (female)": "resource/singer/singer_embedding_ace-8.npy",
"singer5 (male)": "resource/singer/singer_embedding_ace-7.npy",
"singer6 (female)": "resource/singer/singer_embedding_itako.npy",
"singer7 (male)": "resource/singer/singer_embedding_ofuton.npy",
"singer8 (female)": "resource/singer/singer_embedding_kising_orange.npy",
"singer9 (male)": "resource/singer/singer_embedding_m4singer_Tenor-1.npy",
"singer10 (female)": "resource/singer/singer_embedding_m4singer_Alto-4.npy",
},
}
model_dict = {
"Model①(Chinese)-zh": "espnet/aceopencpop_svs_visinger2_40singer_pretrain",
"Model②(Multilingual)-zh": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained",
"Model②(Multilingual)-jp": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained",
}
total_singers = list(singer_embeddings["Model②(Multilingual)-zh"].keys())
langs = {
"zh": 2,
"jp": 1,
}
predictor = torch.hub.load("South-Twilight/SingMOS:v0.2.0", "singing_ssl_mos", trust_repo=True)
exist_model = "Null"
svs = None
def gen_song(model_name, spk, texts, durs, pitchs):
fs = 44100
tempo = 120
lang = model_name.split("-")[-1]
PRETRAIN_MODEL = model_dict[model_name]
if texts is None:
return (fs, np.array([0.0])), "Error: No Text provided!"
if durs is None:
return (fs, np.array([0.0])), "Error: No Dur provided!"
if pitchs is None:
return (fs, np.array([0.0])), "Error: No Pitch provided!"
# preprocess
if lang == "zh":
texts = preprocess_input(texts, "")
text_list = get_pinyin(texts)
elif lang == "jp":
texts = preprocess_input(texts, " ")
text_list = texts.strip().split()
durs = preprocess_input(durs, " ")
dur_list = durs.strip().split()
pitchs = preprocess_input(pitchs, " ")
pitch_list = pitchs.strip().split()
if len(text_list) != len(dur_list):
return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with duration({len(dur_list)})!"
if len(text_list) != len(pitch_list):
return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with pitch({len(pitch_list)})!"
## text to phoneme
tokenizer = get_tokenizer(model_name, lang)
sybs = []
for text in text_list:
if text == "AP" or text == "SP":
rev = [text]
elif text == "-" or text == "——":
rev = [text]
else:
rev = tokenizer(text)
if rev == False:
return (fs, np.array([0.0])), f"Error: text `{text}` is invalid!"
rev = postprocess_phn(rev, model_name, lang)
phns = "_".join(rev)
sybs.append(phns)
pitch_dict = load_pitch_dict()
labels = []
notes = []
st = 0
pre_phn = ""
for phns, dur, pitch in zip(sybs, dur_list, pitch_list):
if phns == "-" or phns == "——":
phns = pre_phn
if pitch not in pitch_dict:
return (fs, np.array([0.0])), f"Error: pitch `{pitch}` is invalid!"
pitch = pitch_dict[pitch]
phn_list = phns.split("_")
lyric = "".join(phn_list)
dur = float(dur)
note = [st, st + dur, lyric, pitch, phns]
st += dur
notes.append(note)
for phn in phn_list:
labels.append(phn)
pre_phn = labels[-1]
phns_str = " ".join(labels)
batch = {
"score": (
int(tempo),
notes,
),
"text": phns_str,
}
print(batch)
# return (fs, np.array([0.0])), "success!"
# Infer
global exist_model
global svs
if exist_model == "Null" or exist_model != model_name:
device = "cpu"
# device = "cuda" if torch.cuda.is_available() else "cpu"
d = ModelDownloader()
pretrain_downloaded = d.download_and_unpack(PRETRAIN_MODEL)
svs = SingingGenerate(
train_config = pretrain_downloaded["train_config"],
model_file = pretrain_downloaded["model_file"],
device = device
)
exist_model = model_name
if model_name == "Model①(Chinese)-zh":
sid = np.array([singer_embeddings[model_name][spk]])
output_dict = svs(batch, sids=sid)
else:
lid = np.array([langs[lang]])
spk_embed = np.load(singer_embeddings[model_name][spk])
output_dict = svs(batch, lids=lid, spembs=spk_embed)
wav_info = output_dict["wav"].cpu().numpy()
# mos prediction with sr=16k
global predictor
wav_mos = librosa.resample(wav_info, orig_sr=fs, target_sr=16000)
wav_mos = torch.from_numpy(wav_mos).unsqueeze(0)
len_mos = torch.tensor([wav_mos.shape[1]])
score = predictor(wav_mos, len_mos)
return (fs, wav_info), "success!", round(score.item(), 2)
# SP: silence, AP: aspirate.
examples = [
["Model①(Chinese)-zh", "singer1 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "60 62 62 62 0 62 58 0\n58 58 0 58 58 63 0"],
["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C4 D4 D4 D4 rest D4 A#3 rest\nA#3 A#3 rest A#3 A#3 D#4 rest"], # midi note
["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C#4 D#4 D#4 D#4 rest D#4 B3 rest\nB3 B3 rest B3 B3 E4 rest"], # up 1 key
["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 大 地 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C4 D4 D4 D4 rest D4 A#3 rest\nA#3 A#3 rest A#3 A#3 D#4 rest"], # lyrics
["Model②(Multilingual)-zh", "singer3 (male)", "你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.11 0.33 0.29 0.13 0.15 0.48\n0.24 0.18 0.34 0.15 0.27 0.28 0.63 0.44", "63 63 63 63 0 63\n62 62 62 63 65 63 62 0"],
["Model②(Multilingual)-zh", "singer3 (male)", "你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.23 0.66 0.58 0.27 0.3 0.97\n0.48 0.36 0.69 0.3 0.53 0.56 1.27 0.89", "63 63 63 63 0 63\n62 62 62 63 65 63 62 0"], # double duration
["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP\n你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34\n0.11 0.33 0.29 0.13 0.15 0.48\n0.24 0.18 0.34 0.15 0.27 0.28 0.63 0.44", "60 62 62 62 0 62 58 0\n58 58 0 58 58 63 0\n63 63 63 63 0 63\n62 62 62 63 65 63 62 0"], # long
["Model①(Chinese)-zh", "singer3 (male)", "修 炼 爱 情 的 心 酸 SP AP", "0.42 0.21 0.19 0.28 0.22 0.33 1.53 0.1 0.29", "68 70 68 66 63 68 68 0 0"],
["Model①(Chinese)-zh", "singer3 (male)", "学 会 放 好 以 前 的 渴 望 SP AP", "0.3 0.22 0.29 0.27 0.25 0.44 0.54 0.29 1.03 0.08 0.39", "68 70 68 66 61 68 68 65 66 0 0"],
["Model①(Chinese)-zh", "singer3 (male)", "SP 我 不 - 是 一 定 要 你 回 - 来 SP", "0.37 0.45 0.47 0.17 0.52 0.28 0.46 0.31 0.44 0.45 0.2 2.54 0.19", "0 51 60 61 59 59 57 57 59 60 61 59 0"], # slur
["Model①(Chinese)-zh", "singer4 (female)", "AP 我 多 想 再 见 你\n哪 怕 匆 - 匆 一 AP 眼 就 别 离 AP", "0.13 0.24 0.68 0.78 0.86 0.4 0.94 0.54 0.3 0.56 0.16 0.86 0.26 0.22 0.28 0.78 0.68 1.5 0.32", "0 57 66 63 63 63 63 60 61 61 63 66 66 0 61 61 59 58 0"],
["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "0.6 0.3 0.3 0.3 0.3 0.6 0.6 0.3 0.3 0.6 0.23", "60 60 60 56 56 56 55 55 55 53 56"],
["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "0.6 0.3 0.3 0.3 0.3 0.6 0.6 0.3 0.3 0.6 0.23", "62 62 62 58 58 58 57 57 57 55 58"], # pitch
["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "1.2 0.6 0.6 0.6 0.6 1.2 1.2 0.6 0.6 1.2 0.45", "60 60 60 56 56 56 55 55 55 53 56"], # double dur
["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "0.3 0.15 0.15 0.15 0.15 0.3 0.3 0.15 0.15 0.3 0.11", "60 60 60 56 56 56 55 55 55 53 56"], # half dur
["Model②(Multilingual)-jp", "singer8 (female)", "きっ と と べ ば そ ら ま で と ど く AP", "0.39 2.76 0.2 0.2 0.39 0.39 0.2 0.2 0.39 0.2 0.2 0.59 1.08", "64 71 68 69 71 71 69 68 66 68 69 68 0"],
["Model②(Multilingual)-jp", "singer8 (female)", "じゃ の め で お む か え う れ し い な", "0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.65", "60 60 60 62 64 67 69 69 64 64 64 62 60"],
["Model②(Multilingual)-jp", "singer10 (female)", "お と め わ ら い か ふぁ い や ら い か ん な い す ぶ ろ うぃ ん ぶ ろ うぃ ん い ん ざ うぃ ん", "0.15 0.15 0.15 0.15 0.3 0.15 0.3 0.15 0.15 0.3 0.07 0.07 0.15 0.15 0.15 0.15 0.15 0.15 0.45 0.07 0.07 0.07 0.38 0.07 0.07 0.15 0.15 0.3 0.15 0.15", "67 67 67 67 67 67 69 67 67 69 67 67 64 64 64 64 64 64 62 64 64 62 62 64 64 62 62 59 59 59"],
]
with gr.Blocks() as demo:
gr.Markdown(
"""
<h1 align="center"> Demo of Singing Voice Synthesis in Muskits-ESPnet </h1>
<div style="font-size: 20px;">
This is the demo page of our toolkit <a href="https://arxiv.org/abs/2409.07226"><b>Muskits-ESPnet: A Comprehensive Toolkit for Singing Voice Synthesis in New Paradigm</b></a>.
Singing Voice Synthesis (SVS) takes a music score as input and generates singing vocal with the voice of a specific singer.
Music score usually includes lyrics, as well as duration and pitch of each word in lyrics,
<h2>How to use:</h2>
<ol>
<li><b>Choose Model-Language</b>:
<ul>
<li>Choose "zh" for Chinese lyrics input or "jp" for Japanese lyrics input.</li>
<li>For example, "Model②(Mulitlingual)-zh" means model "Model②(Multilingual)" with lyrics input in Chinese.</li>
</ul>
</li>
<li><b>[Optional] Choose Singer</b>: Choose a singer from the drop-down menu.</li>
<li><b>Input lyrics</b>:
<ul>
<li>Input Chinese characters for "zh" and hiragana for "jp".</li>
<li>You may include special symbols: 'AP' for breath, 'SP' for silence, and '-' for slur (Chinese lyrics only).</li>
<li>Separate each lyric by either a space (' ') or a newline ('\\n') (no quotation marks needed).</li>
</ul>
</li>
<li><b>Input durations</b>:
<ul>
<li>Input durations as float numbers.</li>
<li>The durations sequence should <b>match the lyric sequence in length</b>, with each duration aligned to a lyric.</li>
<li>Separate each duration by a space (' ') or a newline ('\\n') (no quotation marks needed).</li>
</ul>
</li>
<li><b>Input pitches</b>:
<ul>
<li>Input MIDI note names or MIDI note numbers (e.g., MIDI note name "69" represents the MIDI note number "A4", and others follow accordingly).</li>
<li>The pitch sequence should <b>match the lyric sequence in length</b>, with each pitch corresponding to a lyric.</li>
<li>Separate each duration by a space (' ') or a newline ('\\n') (no quotation marks needed).</li>
</ul>
</li>
<li><b>Hit "Generate" and listen</b>:
<ul>
<li>"Running Status" shows the status of singing generatation. If any error exists, it will show the error information.</li>
<li>"Pseudo MOS" represents predicted mean opinion score for the generated song.</li>
</ul>
</li>
</ol>
</div>
<h2>Notice:</h2>
<ul>
<li> Plenty of exmpales are provided. </li>
<li> Extreme values may result in suboptimal generation quality! </li>
</ul>
"""
)
# Row-1
with gr.Row():
with gr.Column(variant="panel"):
model_name = gr.Radio(
label="Model-Language",
choices=[
"Model①(Chinese)-zh",
"Model②(Multilingual)-zh",
"Model②(Multilingual)-jp",
],
)
with gr.Column(variant="panel"):
singer = gr.Dropdown(
label="Singer",
choices=total_singers,
)
# def set_model(model_name_str: str):
# """
# gets value from `model_name`. either
# uses cached list of speakers for the given model name
# or loads the addon and checks what are the speakers.
# """
# speakers = list(singer_embeddings[model_name_str].keys())
# value = speakers[0]
# return gr.update(
# choices=speakers, value=value, visible=True, interactive=True
# )
# model_name.change(set_model, inputs=model_name, outputs=singer)
# Row-2
with gr.Row():
with gr.Column(variant="panel"):
lyrics = gr.Textbox(label="Lyrics")
duration = gr.Textbox(label="Duration")
pitch = gr.Textbox(label="Pitch")
generate = gr.Button("Generate")
with gr.Column(variant="panel"):
gened_song = gr.Audio(label="Generated Song", type="numpy")
run_status = gr.Textbox(label="Running Status")
pred_mos = gr.Textbox(label=" Pseudo MOS")
gr.Examples(
examples=examples,
inputs=[model_name, singer, lyrics, duration, pitch],
outputs=[singer],
label="Examples",
examples_per_page=20,
)
gr.Markdown("""
<div style='margin:20px auto;'>
<p>References: <a href="https://arxiv.org/abs/2409.07226">Muskits-ESPnet paper</a> |
<a href="https://github.com/espnet/espnet">espnet</a> |
<a href="https://huggingface.co/espnet/aceopencpop_svs_visinger2_40singer_pretrain">Model①(Chinese)</a> |
<a href="https://huggingface.co/espnet/mixdata_svs_visinger2_spkembed_lang_pretrained">Model②(Multilingual)</a> |
<a href="https://github.com/South-Twilight/SingMOS">SingMOS</a></p>
</div>
"""
)
generate.click(
fn=gen_song,
inputs=[model_name, singer, lyrics, duration, pitch],
outputs=[gened_song, run_status, pred_mos],
)
demo.launch()