File size: 6,291 Bytes
4300fed
610f79e
4300fed
61c12f6
c84c9fa
640caa3
3661e80
7ffbb2d
4300fed
 
4fbe883
2227484
af0313a
 
 
 
 
 
 
 
c84c9fa
532dc11
6665213
af0313a
 
 
1bb2f76
af0313a
 
 
 
 
 
 
 
1bb2f76
 
 
 
 
 
 
 
 
 
 
 
3661e80
8bb652f
3661e80
1bb2f76
af0313a
 
1bb2f76
ecd6a6a
2fdc699
1bb2f76
88c49f0
1bb2f76
 
a3bb4a3
1bb2f76
 
 
8bb652f
a3bb4a3
 
 
 
 
 
 
 
af0313a
ba70fc3
 
 
5dabb6b
 
ba70fc3
5dabb6b
 
 
 
 
 
ba70fc3
 
 
5dabb6b
af0313a
 
 
 
 
 
 
 
 
 
 
 
a3bb4a3
c873aff
af0313a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c84c9fa
af0313a
c873aff
c84c9fa
 
 
 
0e9f2c6
c873aff
a3bb4a3
1bb2f76
a3bb4a3
4fbe883
1bb2f76
 
 
4fbe883
 
 
a3bb4a3
1bb2f76
4fbe883
 
 
a3bb4a3
 
1bb2f76
4fbe883
a3bb4a3
af0313a
1bb2f76
 
 
 
 
 
 
 
6665213
 
 
 
 
4300fed
610f79e
1bb2f76
 
 
 
 
f70a183
 
 
abe6429
f70a183
 
94a3228
f70a183
c84c9fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import gradio as gr
import spaces
import os, torch, io
import json
import re
os.system("python -m unidic download")
import httpx
# print("Make sure you've downloaded unidic (python -m unidic download) for this WebUI to work.")
from melo.api import TTS
import tempfile
import wave
from pydub import AudioSegment
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    BitsAndBytesConfig,
)
from threading import Thread

from gradio_client import Client

# client = Client("eswardivi/AIO_Chat")
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16
)

model = AutoModelForCausalLM.from_pretrained(
    "NousResearch/Hermes-2-Pro-Llama-3-8B", quantization_config=quantization_config
)
tok = AutoTokenizer.from_pretrained("NousResearch/Hermes-2-Pro-Llama-3-8B")
terminators = [
    tok.eos_token_id,
    tok.convert_tokens_to_ids("<|eot_id|>")
]
def validate_url(url):
    try:
        response = httpx.get(url, timeout=60.0)
        response.raise_for_status()
        return response.text
    except httpx.RequestError as e:
        return f"An error occurred while requesting {url}: {str(e)}"
    except httpx.HTTPStatusError as e:
        return f"Error response {e.response.status_code} while requesting {url}"
    except Exception as e:
        return f"An unexpected error occurred: {str(e)}"

def fetch_text(url):
    print("Entered Webpage Extraction")
    prefix_url = "https://r.jina.ai/"
    full_url = prefix_url + url
    print(full_url)
    print("Exited Webpage Extraction")
    return validate_url(full_url)
    
@spaces.GPU(duration=100)
def synthesize(article_url,progress_audio=gr.Progress()):
    if not article_url.startswith("http://") and not article_url.startswith("https://"):
        return "URL must start with 'http://' or 'https://'",None

    text = fetch_text(article_url)
    if "Error" in text:
        return text, None

    device = "cuda" if torch.cuda.is_available() else "cpu"
    template = """
        {
            "conversation": [
                {"speaker": "", "text": ""},
                {"speaker": "", "text": ""}
            ]
        }
        """
    chat = []
    chat.append(
        {
            "role": "user",
            "content": text + """\n Convert the provided text into a short, informative podcast conversation between two experts. The tone should be professional and engaging. Please adhere to the following format and return the conversation in JSON:
    
    {
        "conversation": [
            {"speaker": "", "text": ""},
            {"speaker": "", "text": ""}
        ]
    }
    """,
        }
    )


    messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
    model_inputs = tok([messages], return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(
        tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True
    )
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=1024,
        do_sample=True,
        temperature=0.9,
        eos_token_id=terminators,
    )
    print("Entered Generation")
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    partial_text = ""
    for new_text in streamer:
        partial_text += new_text

    # print("Calling API")
    # result = client.predict(
	# 	f"{text} \n Convert the text as Elaborate Conversation between two people as Podcast.\nfollowing this template and return only JSON \n {template}",
	# 	0.9,	
	# 	True,	
	# 	1024,
	# 	api_name="/chat"
    # )
    # print("API Call Completed")
    pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
    json_match = re.search(pattern, partial_text)
    print("Exited Generation")
    if json_match:
        conversation=json_match.group()
    else:
        conversation = template
    print(partial_text)
    print(conversation)
    speed = 1.0
    models = {"EN": TTS(language="EN", device=device)}
    speakers = ["EN-Default", "EN-US"]
    combined_audio = AudioSegment.empty()

    conversation_dict = json.loads(conversation)
    for i, turn in enumerate(conversation_dict["conversation"]):
        bio = io.BytesIO()
        text = turn["text"]
        speaker = speakers[i % 2]
        speaker_id = models["EN"].hps.data.spk2id[speaker]
        models["EN"].tts_to_file(text, speaker_id, bio, speed=1.0, pbar=progress_audio.tqdm, format="wav")
        bio.seek(0)
        audio_segment = AudioSegment.from_file(bio, format="wav")
        combined_audio += audio_segment
    final_audio_path = "final.mp3"
    combined_audio.export(final_audio_path, format="mp3")
    return conversation, final_audio_path


with gr.Blocks(theme='gstaff/sketch') as demo:
    gr.Markdown("# Turn Any Article into a Podcast")
    gr.Markdown("## Easily convert articles from URLs into listenable audio podcasts.")
    gr.Markdown("### Instructions")
    gr.Markdown("""
    - **Step 1:** Paste the URL of the article you want to convert into the textbox.
    - **Step 2:** Click on "Podcastify" to generate the podcast.
    - **Step 3:** Listen to the podcast or view the conversation.
    """)
    gr.Markdown("""
    **For a faster instance, check out:**
    - [NarrateIt](https://narrateit.streamlit.app/) for faster processing.
    - View the code at [GitHub - NarrateIt](https://github.com/EswarDivi/NarrateIt).
    """)
    with gr.Group():
        text = gr.Textbox(label="Article Link")
        btn = gr.Button("Podcastify", variant="primary")
    with gr.Row():
        conv_display = gr.Textbox(label="Conversation", interactive=False)
        aud = gr.Audio(interactive=False)
    btn.click(synthesize, inputs=[text], outputs=[conv_display, aud])
    gr.Markdown("""
    Special thanks to:

    - [gstaff/sketch](https://huggingface.co/spaces/gstaff/sketch) for the Sketch Theme.
    - [mrfakename/MeloTTS](https://huggingface.co/spaces/mrfakename/MeloTTS) and [GitHub](https://github.com/myshell-ai/MeloTTS) for MeloTTS.
    - [Hermes-2-Pro-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B) for Function Calling Support.
    - [Jina AI](https://jina.ai/reader/) for the web page parsing.
    """)
demo.queue(api_open=True, default_concurrency_limit=10).launch(show_api=True,share=True)