File size: 6,260 Bytes
4300fed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Convert Japanese text to phonemes which is
# compatible with Julius https://github.com/julius-speech/segmentation-kit
import re
import unicodedata

from transformers import AutoTokenizer

from . import punctuation, symbols


from num2words import num2words
from melo.text.ko_dictionary import english_dictionary, etc_dictionary
from anyascii import anyascii
from jamo import hangul_to_jamo

def normalize(text):
    text = text.strip()
    text = re.sub("[โบ€-โบ™โบ›-โปณโผ€-โฟ•ใ€…ใ€‡ใ€ก-ใ€ฉใ€ธ-ใ€บใ€ปใ€-ไถตไธ€-้ฟƒ่ฑˆ-้ถดไพฎ-้ ปไธฆ-้พŽ]", "", text)
    text = normalize_with_dictionary(text, etc_dictionary)
    text = normalize_english(text)
    text = text.lower()
    return text


def normalize_with_dictionary(text, dic):
    if any(key in text for key in dic.keys()):
        pattern = re.compile("|".join(re.escape(key) for key in dic.keys()))
        return pattern.sub(lambda x: dic[x.group()], text)
    return text


def normalize_english(text):
    def fn(m):
        word = m.group()
        if word in english_dictionary:
            return english_dictionary.get(word)
        return word

    text = re.sub("([A-Za-z]+)", fn, text)
    return text


g2p_kr = None
def korean_text_to_phonemes(text, character: str = "hangeul") -> str:
    """

    The input and output values look the same, but they are different in Unicode.

    example :

        input = 'ํ•˜๋Š˜' (Unicode : \ud558\ub298), (ํ•˜ + ๋Š˜)
        output = 'แ„’แ…กแ„‚แ…ณแ†ฏ' (Unicode :\u1112\u1161\u1102\u1173\u11af), (แ„’ + แ…ก + แ„‚ + แ…ณ + แ†ฏ)

    """
    global g2p_kr  # pylint: disable=global-statement
    if g2p_kr is None:
        from g2pkk import G2p

        g2p_kr = G2p()

    if character == "english":
        from anyascii import anyascii
        text = normalize(text)
        text = g2p_kr(text)
        text = anyascii(text)
        return text

    text = normalize(text)
    text = g2p_kr(text)
    text = list(hangul_to_jamo(text))  # 'ํ•˜๋Š˜' --> ['แ„’', 'แ…ก', 'แ„‚', 'แ…ณ', 'แ†ฏ']
    return "".join(text)

def text_normalize(text):
    # res = unicodedata.normalize("NFKC", text)
    # res = japanese_convert_numbers_to_words(res)
    # # res = "".join([i for i in res if is_japanese_character(i)])
    # res = replace_punctuation(res)
    text = normalize(text)
    return text


def distribute_phone(n_phone, n_word):
    phones_per_word = [0] * n_word
    for task in range(n_phone):
        min_tasks = min(phones_per_word)
        min_index = phones_per_word.index(min_tasks)
        phones_per_word[min_index] += 1
    return phones_per_word



# tokenizer = AutoTokenizer.from_pretrained('cl-tohoku/bert-base-japanese-v3')

model_id = 'kykim/bert-kor-base'
tokenizer = AutoTokenizer.from_pretrained(model_id)

def g2p(norm_text):
    tokenized = tokenizer.tokenize(norm_text)
    phs = []
    ph_groups = []
    for t in tokenized:
        if not t.startswith("#"):
            ph_groups.append([t])
        else:
            ph_groups[-1].append(t.replace("#", ""))
    word2ph = []
    for group in ph_groups:
        text = ""
        for ch in group:
            text += ch
        if text == '[UNK]':
            phs += ['_']
            word2ph += [1]
            continue
        elif text in punctuation:
            phs += [text]
            word2ph += [1]
            continue
        # import pdb; pdb.set_trace()
        # phonemes = japanese_text_to_phonemes(text)
        # text = g2p_kr(text)
        phonemes = korean_text_to_phonemes(text)
        # import pdb; pdb.set_trace()
        # # phonemes = [i for i in phonemes if i in symbols]
        # for i in phonemes:
        #     assert i in symbols, (group, norm_text, tokenized, i)
        phone_len = len(phonemes)
        word_len = len(group)

        aaa = distribute_phone(phone_len, word_len)
        assert len(aaa) == word_len
        word2ph += aaa

        phs += phonemes
    phones = ["_"] + phs + ["_"]
    tones = [0 for i in phones]
    word2ph =  [1] + word2ph + [1]
    assert len(word2ph) == len(tokenized) + 2
    return phones, tones, word2ph

def get_bert_feature(text, word2ph, device='cuda'):
    from . import japanese_bert
    return japanese_bert.get_bert_feature(text, word2ph, device=device, model_id=model_id)


if __name__ == "__main__":
    # tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
    from text.symbols import symbols
    text = "์ „ ์ œ ์ผ์˜ ๊ฐ€์น˜์™€ ํฐํƒ€์ธ ๋Œ€์ค‘๋“ค์ด ํ•œ ์ผ์˜ ์˜๋ฏธ๋ฅผ ์ž˜ ์••๋‹ˆ๋‹ค. ์•ž์œผ๋กœ๋„ ์ „ ์ œ ์ผ์— ์ž๋ถ€์‹ฌ์„ ๊ฐ–๊ณ  ์‚ด์•„๊ฐˆ ๊ฒ๋‹ˆ๋‹ค"
    import json

    # genshin_data = json.load(open('/data/zwl/workspace/StarRail_Datasets/Index & Scripts/Index/1.3/Korean.json'))
    genshin_data = json.load(open('/data/zwl/workspace/Genshin_Datasets/Index & Script/AI Hobbyist Version/Index/4.1/KR_output.json'))
    from tqdm import tqdm
    new_symbols = []
    for key, item in tqdm(genshin_data.items()):
        texts = item.get('voiceContent', '')
        if isinstance(texts, list):
            texts = ','.join(texts)
        if texts is None:
            continue
        if len(texts) == 0:
            continue

        text = text_normalize(text)
        phones, tones, word2ph = g2p(text)
        bert = get_bert_feature(text, word2ph)
        import  pdb; pdb.set_trace()
        for ph in phones:
            if ph not in symbols and ph not in new_symbols:
                new_symbols.append(ph)
                print('update!, now symbols:')
                print(new_symbols)
                with open('korean_symbol.txt', 'w') as f:
                    f.write(f'{new_symbols}')

        

# if __name__ == '__main__':
#     from pykakasi import kakasi
#     # Initialize kakasi object
#     kakasi = kakasi()

#     # Set options for converting Chinese characters to Katakana
#     kakasi.setMode("J", "H")  # Chinese to Katakana
#     kakasi.setMode("K", "H")  # Hiragana to Katakana

#     # Convert Chinese characters to Katakana
#     conv = kakasi.getConverter()
#     katakana_text = conv.do('ใˆใˆใ€ๅƒ•ใฏใŠใใชใจ็”ณใ—ใพใ™ใ€‚ใ“ใกใ‚‰ใฎๅฐใ•ใ„ใ‚ใ‚‰ในใฏๆๅญใ€‚ใ”ๆŒจๆ‹ถใŒ้…ใ‚Œใฆใ—ใพใ„ใ™ใฟใพใ›ใ‚“ใ€‚ใ‚ใชใŸใฎๅใฏ?')  # Replace with your Chinese text

#     print(katakana_text)  # Output: ใƒ‹ใƒผใƒใ‚ชใ‚ปใ‚ซใ‚ค