import gradio as gr import spaces import os, torch, io import json import re # os.system("python -m unidic download") import httpx # print("Make sure you've downloaded unidic (python -m unidic download) for this WebUI to work.") from melo.api import TTS import tempfile import wave from pydub import AudioSegment from gradio_client import Client client = Client("eswardivi/AIO_Chat") def fetch_text(url): print("Entered Webpage Extraction") prefix_url = "https://r.jina.ai/" url = prefix_url + url response = httpx.get(url, timeout=120.0) print("Response Received") return response.text @spaces.GPU def synthesize(article_url, progress=gr.Progress()): text = fetch_text(article_url) device = "cuda" if torch.cuda.is_available() else "cpu" template = """ { "conversation": [ {"speaker": "", "text": ""}, {"speaker": "", "text": ""} ] } """ result = client.predict( f"{text} \n Convert the text as Elaborate Conversation between two people as Podcast.\nfollowing this template and return only JSON \n {template}", 0.9, True, 1024, api_name="/chat" ) pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}" json_match = re.search(pattern, result) if json_match: conversation=json_match.group() else: conversation = template speed = 1.0 models = { "EN": TTS(language="EN", device=device), } speakers = ["EN-Default", "EN-US"] combined_audio = AudioSegment.empty() conversation = json.loads(conversation) for i, turn in enumerate(conversation["conversation"]): bio = io.BytesIO() text = turn["text"] speaker = speakers[i % 2] speaker_id = models["EN"].hps.data.spk2id[speaker] models["EN"].tts_to_file( text, speaker_id, bio, speed=speed, pbar=progress.tqdm, format="wav" ) bio.seek(0) audio_segment = AudioSegment.from_file(bio, format="wav") combined_audio += audio_segment final_audio_path = "final.mp3" combined_audio.export(final_audio_path, format="mp3") return final_audio_path with gr.Blocks() as demo: gr.Markdown("# Not Ready to USE") gr.Markdown("# Turn Any Article into Podcast") gr.Markdown("## Easily convert articles from URLs into listenable audio Podcast.") with gr.Group(): text = gr.Textbox(label="Article Link") btn = gr.Button("Podcasitfy", variant="primary") aud = gr.Audio(interactive=False) btn.click(synthesize, inputs=[text], outputs=[aud]) demo.queue(api_open=True, default_concurrency_limit=10).launch(show_api=True,share=True)