Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,70 @@
|
|
1 |
import pandas as pd
|
2 |
import streamlit as st
|
3 |
import plotly.graph_objects as go
|
|
|
4 |
|
5 |
df = pd.read_excel("result.xlsx")
|
6 |
-
def get_lat_lon(row):
|
7 |
-
row = eval(row['result_dadata'])[0]
|
8 |
-
lat = row['geo_lat']
|
9 |
-
lon = row['geo_lon']
|
10 |
-
adress = row['result']
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def get_colors(row):
|
15 |
-
if row
|
|
|
|
|
|
|
|
|
16 |
return 'red'
|
17 |
-
elif row
|
18 |
return 'blue'
|
19 |
-
elif row
|
20 |
-
return '
|
21 |
-
# elif row <= 2000 and row > 1000:
|
22 |
-
# return 'green'
|
23 |
-
# elif row <= 200 and row > 100:
|
24 |
-
# return 'purple'
|
25 |
-
# elif row <= 100 and row > 30:
|
26 |
-
# return 'orange'
|
27 |
-
else:
|
28 |
-
return 'black'
|
29 |
|
30 |
-
df[
|
31 |
-
viz_df = df[['lpu_name','lat', 'lon', 'adress', 'MT_SUM_RUR']].copy()
|
32 |
-
viz_df['MT_SUM_RUR'] = viz_df['MT_SUM_RUR']/1000
|
33 |
|
|
|
34 |
viz_df[['lat','lon']] = viz_df[['lat','lon']].astype(float)
|
35 |
-
viz_df['colors'] = viz_df['MT_SUM_RUR'].apply(get_colors)
|
36 |
-
|
37 |
-
text_series ="Название клиники: "+ viz_df['lpu_name'] + "<br>" + "Адрес: " + viz_df["adress"] + "<br>" + "Сумма:" + viz_df['MT_SUM_RUR'].astype(str) + " тыс.руб"
|
38 |
-
fig_bubbles_coords = go.Figure(data=go.Scattermapbox(
|
39 |
-
lat=viz_df['lat'],
|
40 |
-
lon=viz_df['lon'],
|
41 |
-
mode='markers',
|
42 |
-
marker=go.scattermapbox.Marker(
|
43 |
-
size=viz_df['MT_SUM_RUR'],
|
44 |
-
color='red',
|
45 |
-
sizemode='area',
|
46 |
-
sizeref=5,
|
47 |
-
opacity=0.6
|
48 |
-
),
|
49 |
-
text=text_series,
|
50 |
-
))
|
51 |
-
|
52 |
-
fig_bubbles_coords.update_layout(
|
53 |
-
mapbox_style='open-street-map',
|
54 |
-
autosize=True,
|
55 |
-
hovermode='closest',
|
56 |
-
showlegend=False,
|
57 |
-
mapbox=dict(
|
58 |
-
center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
|
59 |
-
zoom=9
|
60 |
-
),
|
61 |
-
width=900,
|
62 |
-
height=900
|
63 |
-
)
|
64 |
-
|
65 |
-
fig_bubbles = go.Figure(data=go.Scattermapbox(
|
66 |
-
lat=viz_df['lat'],
|
67 |
-
lon=viz_df['lon'],
|
68 |
-
mode='markers',
|
69 |
-
marker=go.scattermapbox.Marker(
|
70 |
-
size=viz_df['MT_SUM_RUR'],
|
71 |
-
color='red',
|
72 |
-
sizemode='area',
|
73 |
-
sizeref=5,
|
74 |
-
opacity=0.6,
|
75 |
-
),
|
76 |
-
customdata=text_series,
|
77 |
-
))
|
78 |
-
|
79 |
-
fig_bubbles.update_layout(
|
80 |
-
mapbox_style='open-street-map',
|
81 |
-
autosize=True,
|
82 |
-
hovermode='closest',
|
83 |
-
showlegend=False,
|
84 |
-
mapbox=dict(
|
85 |
-
center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
|
86 |
-
zoom=9
|
87 |
-
),
|
88 |
-
width=900,
|
89 |
-
height=900
|
90 |
-
)
|
91 |
-
|
92 |
-
fig_bubbles.update_traces(hovertemplate='<b>%{customdata}</b>')
|
93 |
-
|
94 |
-
fig_heatbar = go.Figure(data=go.Scattermapbox(
|
95 |
-
lat=viz_df['lat'],
|
96 |
-
lon=viz_df['lon'],
|
97 |
-
mode='markers',
|
98 |
-
marker=go.scattermapbox.Marker(
|
99 |
-
color=viz_df['MT_SUM_RUR'],
|
100 |
-
sizemode='area',
|
101 |
-
sizeref=5,
|
102 |
-
opacity=1,
|
103 |
-
colorscale='rdylbu', # Градиент цветов от светло-синего до темно-синего
|
104 |
-
colorbar=dict(title='MT_SUM_RUR')
|
105 |
-
),
|
106 |
-
customdata=text_series,
|
107 |
-
))
|
108 |
-
|
109 |
-
fig_heatbar.update_layout(
|
110 |
-
mapbox_style='open-street-map',
|
111 |
-
autosize=True,
|
112 |
-
hovermode='closest',
|
113 |
-
showlegend=False,
|
114 |
-
mapbox=dict(
|
115 |
-
center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
|
116 |
-
zoom=9
|
117 |
-
),
|
118 |
-
width=900,
|
119 |
-
height=900
|
120 |
-
)
|
121 |
-
|
122 |
-
fig_heatbar.update_traces(hovertemplate='<b>%{customdata}</b>')
|
123 |
-
|
124 |
-
dct_colors = {'red':'больше 10000',
|
125 |
-
'blue':'10000-4000',
|
126 |
-
'yellow':'4000-2000',
|
127 |
-
# 'green':'400-200',
|
128 |
-
# 'purple':'200-100',
|
129 |
-
# 'orange':'100-30',
|
130 |
-
'black':'меньше 2000'}
|
131 |
-
colors = ['red',
|
132 |
-
'blue',
|
133 |
-
'yellow',
|
134 |
-
# 'green',
|
135 |
-
# 'purple',
|
136 |
-
# 'orange',
|
137 |
-
'black']
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
fig_colored = go.Figure()
|
140 |
-
|
141 |
for color in colors:
|
142 |
temp_df = viz_df[viz_df['colors'] == color]
|
143 |
-
text_series_temp = "Название клиники: "+ temp_df['lpu_name'] + "<br>" + "Адрес: " + temp_df["
|
144 |
fig_colored.add_trace(go.Scattermapbox(
|
145 |
lat=temp_df['lat'],
|
146 |
lon=temp_df['lon'],
|
@@ -155,26 +79,20 @@ for color in colors:
|
|
155 |
customdata=text_series_temp,
|
156 |
))
|
157 |
|
158 |
-
|
159 |
fig_colored.update_layout(
|
160 |
mapbox_style='open-street-map',
|
161 |
autosize=True,
|
162 |
hovermode='closest',
|
163 |
showlegend=True,
|
164 |
mapbox=dict(
|
165 |
-
center=dict(lat=
|
166 |
zoom=9
|
167 |
),
|
168 |
width=900,
|
169 |
height=900
|
170 |
)
|
171 |
-
fig_colored.update_traces(hovertemplate='<b>%{customdata}</b>')
|
172 |
|
173 |
-
viz_df = viz_df.rename(columns={"MT_SUM_RUR":"Сумма"})
|
174 |
|
175 |
-
|
176 |
-
st.plotly_chart(fig_bubbles)
|
177 |
-
st.plotly_chart(fig_heatbar)
|
178 |
st.plotly_chart(fig_colored)
|
179 |
-
|
180 |
-
# %%
|
|
|
1 |
import pandas as pd
|
2 |
import streamlit as st
|
3 |
import plotly.graph_objects as go
|
4 |
+
from geopy.distance import geodesic as GD
|
5 |
|
6 |
df = pd.read_excel("result.xlsx")
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
df['lon'] = [eval(x)[0]['geo_lon'] for x in df['result_dadata']]
|
9 |
+
df['lat'] = [eval(x)[0]['geo_lat'] for x in df['result_dadata']]
|
10 |
+
df['address'] = [eval(x)[0]['result'] for x in df['result_dadata']]
|
11 |
+
|
12 |
+
target_coordinates = (55.7307614,37.6299091)
|
13 |
+
|
14 |
+
for i in df.index:
|
15 |
+
lat = df.loc[i,'lat']
|
16 |
+
lon = df.loc[i,'lon']
|
17 |
+
result = GD((lat,lon),target_coordinates).km
|
18 |
+
df.loc[i,'distance'] = result
|
19 |
+
print(result)
|
20 |
+
if result<=2:
|
21 |
+
df.loc[i,'2km_from_target'] = 1
|
22 |
+
df.loc[i,'3km_from_target'] = 1
|
23 |
+
df.loc[i,'5km_from_target'] = 1
|
24 |
+
df.loc[i,'more_than_5km_from_target'] = 0
|
25 |
+
if result<=3:
|
26 |
+
df.loc[i,'2km_from_target'] = 0
|
27 |
+
df.loc[i,'3km_from_target'] = 1
|
28 |
+
df.loc[i,'5km_from_target'] = 1
|
29 |
+
df.loc[i,'more_than_5km_from_target'] = 0
|
30 |
+
if result<=5:
|
31 |
+
df.loc[i,'2km_from_target'] = 0
|
32 |
+
df.loc[i,'3km_from_target'] = 0
|
33 |
+
df.loc[i,'5km_from_target'] = 1
|
34 |
+
df.loc[i,'more_than_5km_from_target'] = 0
|
35 |
+
else:
|
36 |
+
df.loc[i,'2km_from_target'] = 0
|
37 |
+
df.loc[i,'3km_from_target'] = 0
|
38 |
+
df.loc[i,'5km_from_target'] = 0
|
39 |
+
df.loc[i,'more_than_5km_from_target'] = 1
|
40 |
|
41 |
def get_colors(row):
|
42 |
+
if row >= 10:
|
43 |
+
return 'black'
|
44 |
+
elif row <= 10 and row>5:
|
45 |
+
return 'grey'
|
46 |
+
elif row<=5 and row>3:
|
47 |
return 'red'
|
48 |
+
elif row<=3 and row>2:
|
49 |
return 'blue'
|
50 |
+
elif row<=2:
|
51 |
+
return 'green'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
df['colors'] = df['distance'].apply(get_colors)
|
|
|
|
|
54 |
|
55 |
+
viz_df = viz_df = df[['lpu_name','lat', 'lon', 'address', 'distance','colors']].copy()
|
56 |
viz_df[['lat','lon']] = viz_df[['lat','lon']].astype(float)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
dct_colors = {'black':'больше 10',
|
59 |
+
'grey':'5-10',
|
60 |
+
'red':'3-5',
|
61 |
+
'blue':'2-3',
|
62 |
+
'green':'меньше 2'}
|
63 |
+
colors = ['black', 'grey', 'red','blue','green']
|
64 |
fig_colored = go.Figure()
|
|
|
65 |
for color in colors:
|
66 |
temp_df = viz_df[viz_df['colors'] == color]
|
67 |
+
text_series_temp = "Название клиники: "+ temp_df['lpu_name'] + "<br>" + "Адрес: " + temp_df["address"] + "<br>" + "Расстояние от Валовая 20: " + temp_df['distance'].astype(str)
|
68 |
fig_colored.add_trace(go.Scattermapbox(
|
69 |
lat=temp_df['lat'],
|
70 |
lon=temp_df['lon'],
|
|
|
79 |
customdata=text_series_temp,
|
80 |
))
|
81 |
|
|
|
82 |
fig_colored.update_layout(
|
83 |
mapbox_style='open-street-map',
|
84 |
autosize=True,
|
85 |
hovermode='closest',
|
86 |
showlegend=True,
|
87 |
mapbox=dict(
|
88 |
+
center=dict(lat=target_coordinates[0], lon=target_coordinates[1]),
|
89 |
zoom=9
|
90 |
),
|
91 |
width=900,
|
92 |
height=900
|
93 |
)
|
|
|
94 |
|
|
|
95 |
|
96 |
+
fig_colored.update_traces(hovertemplate='<b>%{customdata}</b>')
|
|
|
|
|
97 |
st.plotly_chart(fig_colored)
|
98 |
+
st.dataframe(data=viz_df[['lpu_name', 'distance', 'address']])
|
|