Chaitanya Garg commited on
Commit
cb1857e
1 Parent(s): a6019f9

completed model

Browse files
Files changed (6) hide show
  1. EffNetModel.pt +3 -0
  2. app.py +32 -0
  3. helper.py +36 -0
  4. model.py +18 -0
  5. predictor.py +24 -0
  6. requirements.txt +3 -0
EffNetModel.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55228d3b8996e17611d32e845e3fdbae61c00ee8d7a4ac008a413a1da7734329
3
+ size 31254650
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Imports for Modules ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+ from typing import Tuple, Dict
6
+ from timeit import default_timer as timer
7
+
8
+ ### Functional Imports
9
+ from predictor import predictionMaker
10
+
11
+ exampleList = [["examples/" + example] for example in os.listdir("examples")]
12
+
13
+ title = "Detecting Retinal Diseases for Early Prevention"
14
+ description = "An EfficientNetB2 feature extractor computer vision model to classify OCT images into Brain Tumor types: CNV, DME, Drusen and Normal"
15
+ article = "Created by [Eternal Bliassard](https://github.com/EternalBlissard)."
16
+
17
+ # Create the Gradio demo
18
+ demo = gr.Interface(fn=predictionMaker,
19
+ inputs=[gr.Image(type="pil")],
20
+ outputs=[gr.Label(num_top_classes=2, label="Predictions"),
21
+ gr.Number(label="Prediction time (s)")],
22
+ examples=exampleList,
23
+ title=title,
24
+ description=description,
25
+ article=article)
26
+
27
+ # Launch the demo!
28
+ demo.launch()
29
+
30
+
31
+
32
+
helper.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import matplotlib.pyplot as plt
3
+ import numpy as np
4
+ import os
5
+ import torch
6
+ import random
7
+ import zipfile
8
+ from pathlib import Path
9
+ import requests
10
+
11
+ def setAllSeeds(seed):
12
+ os.environ['MY_GLOBAL_SEED'] = str(seed)
13
+ random.seed(seed)
14
+ np.random.seed(seed)
15
+ torch.manual_seed(seed)
16
+ torch.cuda.manual_seed_all(seed)
17
+
18
+ def dataDownloader(src,dest):
19
+ downloadPath = Path("downloadedData/")/dest
20
+
21
+ if(downloadPath.is_dir()):
22
+ print(f"{downloadPath} directory already exists, skipping downloading procedure")
23
+ else:
24
+ print(f"{downloadPath} directory doesn't already exists, starting downloading procedure")
25
+ downloadPath.mkdir(parents=True,exist_ok=True)
26
+ target = Path(src).name
27
+ with open(Path("downloadedData/")/target,"wb") as f:
28
+ requested = requests.get(src)
29
+ print(f"Downloading {target} from {src}")
30
+ f.write(requested.content)
31
+
32
+ with zipfile.ZipFile(Path("downloadedData/")/target,"r") as zipRef:
33
+ print(f"Unzipping the data")
34
+ zipRef.extractall(downloadPath)
35
+ os.remove(Path("downloadedData/")/target)
36
+ return downloadPath
model.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torchvision
4
+ from torch import nn
5
+ from helper import setAllSeeds
6
+
7
+ def getEffNetModel(seed,numClasses):
8
+ setAllSeeds(seed)
9
+ effNetWeights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
10
+ effNetTransforms = effNetWeights.transforms()
11
+ effNet = torchvision.models.efficientnet_b2(weights=effNetWeights)
12
+ for param in effNet.parameters():
13
+ param.requires_grad = False
14
+ effNet.classifier = nn.Sequential(
15
+ nn.Dropout(p=0.3,inplace=True),
16
+ nn.Linear(1408,numClasses,bias=True)
17
+ )
18
+ return effNet,effNetTransforms
predictor.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Imports for Modules ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+ from typing import Tuple, Dict
6
+ from timeit import default_timer as timer
7
+
8
+ ### Functional Imports
9
+ from model import getEffNetModel
10
+
11
+ classNames = ['CNV', 'DME', 'Drusen', 'Normal']
12
+ effNetModel, effNetTransforms = getEffNetModel(42,len(classNames))
13
+ effNetModel.load_state_dict(torch.load(f="EffNetModel.pt",map_location=torch.device("cpu")))
14
+
15
+ def predictionMaker(img):
16
+ startTime = timer()
17
+ img = effNetTransforms(img).unsqueeze(0)
18
+ effNetModel.eval()
19
+ with torch.inference_mode():
20
+ predProbs = torch.softmax(effNetModel(img),dim=1)
21
+ predDict = {classNames[i]: float(predProbs[0][i]) for i in range(len(classNames))}
22
+ endTime = timer()
23
+ predTime = round(endTime-startTime,4)
24
+ return predDict,predTime
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==2.2.0
2
+ torchvision==0.17.0
3
+ gradio==4.20.0