Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,227 Bytes
7362797 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Chameleon License found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
import torch
from torch import distributed as dist
from torch import nn
from torch.nn import functional as F
from xformers.ops import RMSNorm, fmha, rope_padded
from xformers.ops.fmha.attn_bias import (
BlockDiagonalCausalWithOffsetPaddedKeysMask as AttnBias,
)
@dataclass
class ModelArgs:
model_parallel_size: int = 1
dim: int = 512
n_layers: int = 8
n_heads: int = 8
n_kv_heads: int | None = None
vocab_size: int = -1
ffn_dim_multiplier: float | None = None
multiple_of: int = 256
norm_eps: float = 1e-5
rope_theta: float = 10000.0
qk_normalization: bool = False
swin_norm: bool = False
LayerCache = tuple[torch.Tensor, torch.Tensor]
class Attention(nn.Module):
def __init__(
self,
model_parallel_size: int,
dim: int,
head_dim: int,
n_heads: int,
n_kv_heads: int,
rope_theta: float,
qk_normalization: bool = False,
):
super().__init__()
self.model_parallel_size = model_parallel_size
self.head_dim = head_dim
self.rope_theta = rope_theta
self.n_local_heads = n_heads // model_parallel_size
self.n_local_kv_heads = n_kv_heads // model_parallel_size
self.wqkv = nn.Linear(
dim,
(self.n_local_heads + 2 * self.n_local_kv_heads) * head_dim,
bias=False,
dtype=torch.bfloat16,
)
self.wo = nn.Linear(
self.n_local_heads * head_dim,
dim,
bias=False,
dtype=torch.bfloat16,
)
self.qk_normalization = qk_normalization
if qk_normalization:
self.q_normalization = torch.nn.LayerNorm(head_dim)
self.k_normalization = torch.nn.LayerNorm(head_dim)
self._register_load_state_dict_pre_hook(self.load_hook)
# This adapter makes sure we can load vanilla
# Llama checkpoints where wq, wk, and wv are
# not fused in a single parameter
def load_hook(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
if prefix + "wq.weight" in state_dict:
wq = state_dict.pop(prefix + "wq.weight")
wk = state_dict.pop(prefix + "wk.weight")
wv = state_dict.pop(prefix + "wv.weight")
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
def forward(
self,
x: torch.Tensor,
cache: LayerCache,
attn_bias: AttnBias,
group: dist.ProcessGroup | None = None,
) -> torch.Tensor:
# x.shape is (sum(seq_lens), dim)
#
# Since we support heterogenous sequence
# lengths, the hidden states are all
# concatenated together along the usual
# sequence dimension. The attention below
# finds out where sequences start & end
# using the provided attention bias.
xqkv = self.wqkv(x)
xq = xqkv[:, : (self.n_local_heads * self.head_dim)]
xkv = xqkv[:, (self.n_local_heads * self.head_dim) :]
xk, xv = xkv.chunk(2, 1)
if self.qk_normalization:
xq = xq.view(-1, self.n_local_heads, self.head_dim)
xq = self.q_normalization(xq)
xq = xq.view(-1, self.n_local_heads * self.head_dim)
xk = xk.view(-1, self.n_local_kv_heads, self.head_dim)
xk = self.k_normalization(xk)
xk = xk.view(-1, self.n_local_kv_heads * self.head_dim)
output_shape = xq.shape
xq = xq.view(1, xq.shape[0], self.n_local_heads, self.head_dim)
xk = xk.view(1, xk.shape[0], self.n_local_kv_heads, self.head_dim)
xv = xv.view(1, xv.shape[0], self.n_local_kv_heads, self.head_dim)
cache_k, cache_v = cache
xq = rope_padded(
xq=xq,
xk=xk,
xv=xv,
cache_k=cache_k,
cache_v=cache_v,
attn_bias=attn_bias,
theta=self.rope_theta,
)
# Handle GQA
# Q shape: [B, M, Hkv, Hq // Hkv, K]
heads_per_group = self.n_local_heads // self.n_local_kv_heads
cache_k = cache_k.unsqueeze(3).expand(-1, -1, -1, heads_per_group, -1)
cache_v = cache_v.unsqueeze(3).expand(-1, -1, -1, heads_per_group, -1)
xq = xq.reshape(
[*xq.shape[:2], self.n_local_kv_heads, heads_per_group, xq.shape[-1]]
)
# rope_padded() updated the caches, so we
# call attention directly
output = fmha.memory_efficient_attention_forward(
xq, cache_k, cache_v, attn_bias
)
output = self.wo(output.reshape(output_shape))
if self.model_parallel_size > 1:
dist.all_reduce(output, group=group)
return output
class FeedForward(nn.Module):
def __init__(
self,
model_parallel_size: int,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: float | None,
):
super().__init__()
self.model_parallel_size = model_parallel_size
hidden_dim = int(2 * hidden_dim / 3)
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
assert hidden_dim % model_parallel_size == 0
self.w13 = nn.Linear(
dim,
2 * hidden_dim // model_parallel_size,
bias=False,
)
self.w2 = nn.Linear(
hidden_dim // model_parallel_size,
dim,
bias=False,
)
self._register_load_state_dict_pre_hook(self.load_hook)
# This adapter makes sure we can load vanilla
# Llama checkpoints where w1 and w3 are not
# fused in a single parameter
def load_hook(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
if prefix + "w1.weight" in state_dict:
w1 = state_dict.pop(prefix + "w1.weight")
w3 = state_dict.pop(prefix + "w3.weight")
state_dict[prefix + "w13.weight"] = torch.cat([w1, w3])
def forward(
self, x: torch.Tensor, group: dist.ProcessGroup | None = None
) -> torch.Tensor:
x13 = self.w13(x)
x1, x3 = x13.chunk(2, -1)
output = self.w2(F.silu(x1) * x3)
if self.model_parallel_size > 1:
dist.all_reduce(output, group=group)
return output
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
assert args.dim % args.n_heads == 0
head_dim = args.dim // args.n_heads
if args.n_kv_heads is not None:
n_kv_heads = args.n_kv_heads
else:
n_kv_heads = args.n_heads
model_parallel_size = args.model_parallel_size
assert args.n_heads % n_kv_heads == 0
assert args.n_heads % model_parallel_size == 0
assert n_kv_heads % model_parallel_size == 0
self.attention = Attention(
model_parallel_size=model_parallel_size,
dim=args.dim,
head_dim=head_dim,
n_heads=args.n_heads,
n_kv_heads=n_kv_heads,
rope_theta=args.rope_theta,
qk_normalization=args.qk_normalization,
)
self.feed_forward = FeedForward(
model_parallel_size=model_parallel_size,
dim=args.dim,
hidden_dim=4 * args.dim,
multiple_of=args.multiple_of,
ffn_dim_multiplier=args.ffn_dim_multiplier,
)
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.swin_norm = args.swin_norm
def forward(
self,
x: torch.Tensor,
cache: LayerCache,
attn_bias: AttnBias,
group: dist.ProcessGroup | None = None,
) -> torch.Tensor:
if self.swin_norm:
h = x + self.attention_norm(
self.attention.forward(
x,
cache,
attn_bias,
group=group,
)
)
out = h + self.ffn_norm(self.feed_forward(h, group=group))
else:
h = x + self.attention.forward(
self.attention_norm(x),
cache,
attn_bias,
group=group,
)
out = h + self.feed_forward(self.ffn_norm(h), group=group)
return out
class Transformer(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_parallel_size = args.model_parallel_size
assert args.dim % self.model_parallel_size == 0
assert args.vocab_size > 0
assert args.vocab_size % self.model_parallel_size == 0
self.tok_embeddings = nn.Embedding(
num_embeddings=args.vocab_size,
embedding_dim=args.dim // self.model_parallel_size,
)
self.layers = nn.ModuleList()
for _ in range(args.n_layers):
self.layers.append(TransformerBlock(args))
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
self.output = nn.Linear(
args.dim,
args.vocab_size // self.model_parallel_size,
bias=False,
)
@torch.no_grad()
def forward_with_attn_bias(
self,
token_values: torch.Tensor,
attn_bias: AttnBias,
cache: list[LayerCache],
group: dist.ProcessGroup | None = None,
) -> torch.Tensor:
h = self.tok_embeddings(token_values)
if self.model_parallel_size > 1:
gather = [torch.empty_like(h) for _ in range(self.model_parallel_size)]
dist.all_gather(gather, h, group=group)
h = torch.cat(gather, dim=-1)
for i, layer in enumerate(self.layers):
h = layer(h, cache[i], attn_bias, group=group)
logits = self.output(self.norm(h))
if self.model_parallel_size > 1:
gather = [torch.empty_like(logits) for _ in range(self.model_parallel_size)]
dist.all_gather(gather, logits, group=group)
logits = torch.cat(gather, dim=-1)
return logits.float()
def forward(
self,
token_values: torch.Tensor,
token_lengths: torch.Tensor,
start_pos: torch.Tensor,
cache: list[LayerCache],
kv_padding: int,
group: dist.ProcessGroup | None = None,
) -> torch.Tensor:
attn_bias = AttnBias.from_seqlens(
q_seqlen=token_lengths.tolist(),
kv_seqlen=(start_pos + token_lengths).tolist(),
kv_padding=kv_padding,
)
return self.forward_with_attn_bias(token_values, attn_bias, cache, group=group)
def make_cache(
args: ModelArgs,
length: int,
device: str | torch.device | None = None,
n_layers: int | None = None,
dtype: torch.dtype | None = None,
) -> list[LayerCache]:
"""
Allocate a cache to be used with the Transformer module.
Args:
args (ModelArgs): the model configuration.
length (int): per layer cache size.
It is usually budgeted as ``max_batch * max_seq``
device (torch.device, optional): the device on which
the cache should be allocated.
n_layers (int, optional): the number of layers to
allocate a cache for (defaults to the model
settings).
dtype (torch.dtype, optional): the dtype to use for
cache entries (defaults to the default dtype).
Returns:
The cache object to pass to ``Tranformer.forward``.
"""
head_dim = args.dim // args.n_heads
n_kv_heads = args.n_kv_heads
if n_kv_heads is None:
n_kv_heads = args.n_heads
n_local_kv_heads = n_kv_heads // args.model_parallel_size
if n_layers is None:
n_layers = args.n_layers
shape = (1, length, n_local_kv_heads, head_dim)
return [
(
torch.zeros(shape, device=device, dtype=dtype),
torch.zeros(shape, device=device, dtype=dtype),
)
for _ in range(n_layers)
]
def cache_prefix(cache: list[LayerCache], length: int) -> list[LayerCache]:
"""
Take a prefix view of a larger cache.
The original cache object remains of identical size and valid
after the shrinked alias has been used. This function is useful
when a cache was allocated for a larger batch size than what is
necessary.
Args:
cache: the cache to take a view in.
length (int): the desired length
Returns:
A view in the input cache object.
"""
if len(cache) > 0:
assert cache[0][0].shape[1] >= length
return [(ck[:, :length], cv[:, :length]) for ck, cv in cache]
|