Spaces:
Runtime error
Runtime error
File size: 10,808 Bytes
dda1539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import json
import os
import sys
import time
from pathlib import Path
from typing import List, Literal, Optional, Tuple, TypedDict
import torch
import torch.nn.functional as F
from fairscale.nn.model_parallel.initialize import (
get_model_parallel_rank,
initialize_model_parallel,
model_parallel_is_initialized,
)
from superposed.llama.model import ModelArgs, Transformer
from superposed.llama.tokenizer import Tokenizer
from superposed.llama.utils import *
Role = Literal["system", "user", "assistant"]
class Message(TypedDict):
role: Role
content: str
class CompletionPrediction(TypedDict, total=False):
generation: str
tokens: List[str] # not required
logprobs: List[float] # not required
class ChatPrediction(TypedDict, total=False):
generation: Message
tokens: List[str] # not required
logprobs: List[float] # not required
Dialog = List[Message]
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
SPECIAL_TAGS = [B_INST, E_INST, "<<SYS>>", "<</SYS>>"]
UNSAFE_ERROR = "Error: special tags are not allowed as part of the prompt."
class Llama:
@staticmethod
def build(
ckpt_dir: str,
tokenizer_path: str,
max_seq_len: int,
max_batch_size: int,
device: None,
model_parallel_size: Optional[int] = None,
seed: int = 1,
) -> "Llama":
"""
Build a Llama instance by initializing and loading a pre-trained model.
Args:
ckpt_dir (str): Path to the directory containing checkpoint files.
tokenizer_path (str): Path to the tokenizer file.
max_seq_len (int): Maximum sequence length for input text.
max_batch_size (int): Maximum batch size for inference.
mixed (bool): Whether to mix embeddings or not
model_parallel_size (Optional[int], optional): Number of model parallel processes.
If not provided, it's determined from the environment. Defaults to None.
Returns:
Llama: An instance of the Llama class with the loaded model and tokenizer.
Raises:
AssertionError: If there are no checkpoint files in the specified directory,
or if the model parallel size does not match the number of checkpoint files.
Note:
This method initializes the distributed process group, sets the device to CUDA,
and loads the pre-trained model and tokenizer.
"""
if not torch.distributed.is_initialized():
torch.distributed.init_process_group("nccl")
if not model_parallel_is_initialized():
if model_parallel_size is None:
model_parallel_size = int(os.environ.get("WORLD_SIZE", 1))
initialize_model_parallel(model_parallel_size)
local_rank = int(os.environ.get("LOCAL_RANK", 0))
print(local_rank)
# torch.cuda.set_device(local_rank)
if device == None:
torch.cuda.set_device(local_rank)
device = f"cuda:{local_rank}"
# seed must be the same in all processes
torch.manual_seed(seed)
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
assert model_parallel_size == len(
checkpoints
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
ckpt_path = checkpoints[get_model_parallel_rank()]
checkpoint = torch.load(ckpt_path, map_location="cpu")
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len,
max_batch_size=max_batch_size,
**params,
)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args)
model.load_state_dict(checkpoint, strict=False)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return Llama(model, tokenizer, device)
def __init__(self, model: Transformer, tokenizer: Tokenizer, device):
self.model = model.to(device).eval()
self.tokenizer = tokenizer
self.device = device
@torch.inference_mode()
def generate(
self,
prompt_tokens: List[List[int]],
max_gen_len: int,
temperature: float = 0.6,
top_p: float = 0.9,
logprobs: bool = True,
grade: bool = False
) -> Tuple[List[List[int]], Optional[List[List[float]]]]:
"""
Generate text sequences based on provided prompts using the language generation model.
Args:
prompt_tokens (List[List[int]]): List of tokenized prompts, where each prompt is represented as a list of integers.
max_gen_len (int): Maximum length of the generated text sequence.
temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.
Returns:
Tuple[List[List[int]], Optional[List[List[float]]]]: A tuple containing generated token sequences and, if logprobs is True, corresponding token log probabilities.
Note:
This method uses the provided prompts as a basis for generating text. It employs nucleus sampling to produce text with controlled randomness.
If logprobs is True, token log probabilities are computed for each generated token.
"""
params = self.model.params
bsz = len(prompt_tokens)
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
min_prompt_len = min(len(t) for t in prompt_tokens)
max_prompt_len = max(len(t) for t in prompt_tokens)
# assert min_prompt_len == max_prompt_len
prompt_len = min_prompt_len
assert max_prompt_len <= params.max_seq_len
total_len = min(params.max_seq_len, max_gen_len + max_prompt_len)
pad_id = self.tokenizer.pad_id
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device=self.device)
for k, t in enumerate(prompt_tokens):
tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device=self.device)
if logprobs:
token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
prev_pos = 0
eos_reached = torch.tensor([False] * bsz, device=self.device)
input_text_mask = tokens != pad_id
if grade:
pad_mask = tokens == pad_id
tokens = torch.where(tokens == pad_id, 0, tokens)
logits = self.model.forward(tokens, prev_pos, False)
tokens[pad_mask] = pad_id
token_logprobs = -F.cross_entropy(
input=logits[:, :-1, :].transpose(1, 2),
target=tokens[:, 1:],
reduction="none",
ignore_index=pad_id,
)
#if pad_id in tokens:
# print(pad_id)
# print(tokens)
# print(token_logprobs)
return token_logprobs
for cur_pos in range(min_prompt_len, total_len):
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos, False)
if temperature > 0:
probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
next_token = sample_top_p(probs, top_p)
else:
next_token = torch.argmax(logits[:, -1], dim=-1)
next_token = next_token.reshape(-1)
# only replace token if prompt has already been generated
next_token = torch.where(
input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
)
tokens[:, cur_pos] = next_token
if logprobs:
token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
input=logits.transpose(1, 2),
target=tokens[:, prev_pos + 1 : cur_pos + 1],
reduction="none",
ignore_index=pad_id,
)
eos_reached |= (~input_text_mask[:, cur_pos]) & (
next_token == self.tokenizer.eos_id
)
prev_pos = cur_pos
if all(eos_reached):
break
# seq_len = torch.sum(tokens != pad_id, dim=1)
# return tokens, torch.exp(-1 * torch.sum(logprobs, dim=1) / (seq_len - prompt_len)), torch.exp(-1 * torch.sum(custom_logprobs, dim=1) / )
if logprobs:
token_logprobs = token_logprobs.tolist()
out_ppl = []
for i, toks in enumerate(tokens.tolist()):
if logprobs:
probs = token_logprobs[i][prompt_len : len(prompt_tokens[i]) + max_gen_len]
# cut to eos tok if any
if self.tokenizer.eos_id in toks:
eos_idx = toks.index(self.tokenizer.eos_id)
probs = probs[:eos_idx] if logprobs else None
out_ppl.append(torch.exp(-1 * torch.sum(torch.tensor(probs)) / len(probs)))
return tokens, torch.tensor(out_ppl) if logprobs else None
def sample_top_p(probs, p, s=1):
"""
Perform top-p (nucleus) sampling on a probability distribution.
Args:
probs (torch.Tensor): Probability distribution tensor.
p (float): Probability threshold for top-p sampling.
Returns:
torch.Tensor: Sampled token indices.
Note:
Top-p sampling selects the smallest set of tokens whose cumulative probability mass
exceeds the threshold p. The distribution is renormalized based on the selected tokens.
"""
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs_sort, num_samples=s)
next_token = torch.gather(probs_idx, -1, next_token)
return next_token
|