Spaces:
Runtime error
Runtime error
# Implementation loosely based on https://github.com/tensorflow/tensor2tensor/blob/bafdc1b67730430d38d6ab802cbd51f9d053ba2e/tensor2tensor/utils/beam_search.py#L554 | |
import requests | |
import time | |
from datetime import datetime, timedelta | |
from typing import Optional, Literal | |
import torch | |
import torch.nn as nn | |
from transformers import LlamaTokenizer | |
from superposed.llama.utils import * | |
from superposed.ngrams.ngram_models import NGram | |
INF = 1. * 1e7 | |
# Test by scaling # beams & verify work | |
class Superpose(nn.Module): | |
def __init__(self, | |
initial_tokens, | |
tokenizer, | |
vocab_size, | |
smoothing=Optional[Literal["geom", "all"]], | |
alpha = None, | |
verbose = False, | |
i_weights = None, | |
i_length = None, | |
ngrams = None, | |
sample_beams = False, | |
sample_tokens = False, | |
get_time = False, | |
penalty = 200): # default no effect | |
""" | |
Initialize a beam search class. | |
Args: | |
initial_tokens (torch.Tensor): Initial tokens | |
n_prompts (int): Number of prompts | |
tokenizer (Tokenizer): Llama tokenizer | |
vocab_size (int): Total vocab size | |
smoothing (str): Smoothing method ("geom" for default, "all" for only ngram, None for no ngram) | |
ngram_length (int): N gram length to consider | |
alpha (float): Alpha parameter | |
debug (bool): Whether to print information | |
""" | |
super().__init__() | |
# primary parameters | |
self.n_prompts, self.n_drafts, _ = initial_tokens.shape | |
self.tokenizer = tokenizer | |
self.vocab_size = vocab_size | |
self.alive_seq = initial_tokens | |
self.fin_seq = initial_tokens | |
self.smoothing = smoothing | |
self.alive_log_probs = torch.zeros(self.n_prompts, self.n_drafts, device="cuda") | |
self.fin_log_probs = torch.full((self.n_prompts, self.n_drafts), float("-inf"), device="cuda") | |
self.alpha = alpha | |
self.verbose = verbose | |
self.penalty = penalty | |
# devices | |
self.cpu = torch.device('cpu') | |
self.gpu = torch.device('cuda') | |
# Interpolation length and weights | |
self.interpolation_weights = i_weights | |
self.i_length = i_length | |
# N-grams | |
self.bigram = ngrams[0] if len(ngrams) >= 1 else None | |
self.trigram = ngrams[1] if len(ngrams) >= 2 else None | |
self.fourgram = ngrams[2] if len(ngrams) >= 3 else None | |
self.fivegram = ngrams[3] if len(ngrams) >= 4 else None | |
self.sixgram = ngrams[4] if len(ngrams) >= 5 else None | |
self.sevengram = ngrams[5] if len(ngrams) >= 6 else None | |
# Timing | |
self.get_time = get_time | |
self.lookup_time = None | |
def forward(self, probs, still_prompt, is_first, cur_pos, n_token_sample): | |
""" | |
Apply beam decoding to update generations. | |
Args: | |
probs (torch.Tensor): Next token probability distribution | |
still_prompt (torch.Tensor): Flags of prompts that should not generate yet (n_prompts, ) | |
is_first (torch.Tensor): Flags of prompts that are on their first generation (n_prompts, ) | |
cur_pos (int): Current generation position | |
n_token_sample (int): Number of tokens from model distribution to use | |
Return: | |
if standard beam search: | |
attention_change_ids (torch.Tensor): New indices in kv cache (n_prompts, n_drafts) | |
if mixed: | |
token_weights (torch.Tensor): Mixing weights (n_prompts, vocab_size) | |
""" | |
# Adjust input probabilities | |
probs = self.get_top_k(probs, 32000, n_token_sample) | |
reshaped_probs = probs.reshape(self.n_prompts, 1, -1) | |
reshaped_probs = reshaped_probs.repeat(1, self.n_drafts, 1) | |
# Ngram smoothing | |
if self.smoothing is not None: | |
if self.smoothing == "geom": | |
ngram_probs = self.ngram_probs(self.alive_seq, cur_pos, probs=probs) | |
# Make mask and normalize | |
prob_mask = reshaped_probs != 0 | |
ngram_probs *= prob_mask | |
# Calculate logprobs and interpolate distributions | |
llm_log_probs = torch.log(reshaped_probs) | |
ngram_log_probs = torch.log(ngram_probs) | |
log_probs = (1 - self.alpha) * llm_log_probs + self.alpha * ngram_log_probs | |
# Apply penalty to drafts where no interpolation occurred | |
is_all_inf = (log_probs != float("-inf")).sum(dim=-1, keepdims=True) == 0 | |
log_probs = torch.where(is_all_inf, (1 - self.alpha) * llm_log_probs - self.penalty, log_probs) | |
elif self.smoothing == "all": | |
ngram_probs = self.ngram_probs(self.alive_seq, cur_pos, probs=None) | |
log_probs = torch.log(ngram_probs) | |
else: | |
log_probs = torch.log(reshaped_probs) | |
curr_log_probs = self.alive_log_probs.unsqueeze(dim=2) + log_probs # [n_prompts, n_drafts, vocab_size] | |
# Warning if nan | |
if (torch.any(torch.isnan(curr_log_probs)).item()): | |
raise RuntimeWarning("nan in sequence log probs", file=self.output_file) | |
# Potential Sequences | |
flat_curr_log_probs = curr_log_probs.reshape(-1, self.vocab_size*self.n_drafts) | |
topk_log_probs, topk_idx = torch.topk(flat_curr_log_probs, 2 * self.n_drafts, dim=-1) | |
topk_beam_id = topk_idx // self.vocab_size # [n_prompts, 2 * n_drafts] | |
topk_idx = topk_idx % self.vocab_size # [n_prompts, 2 * n_drafts] | |
# First timestep uses top-k next tokens | |
is_first_idx = is_first.nonzero(as_tuple=True)[0] | |
if len(is_first_idx) != 0: | |
first_time_log_probs = log_probs[is_first_idx][:, 0, :].squeeze(dim=1) | |
first_time_log_probs, first_time_topk_idx = torch.topk(first_time_log_probs, 2 * self.n_drafts, dim=1) | |
topk_idx[is_first_idx] = first_time_topk_idx | |
topk_log_probs[is_first_idx] = self.alive_log_probs[is_first_idx, 0].unsqueeze(dim=1) + first_time_log_probs | |
# New sequences | |
topk_seq = torch.take_along_dim(self.alive_seq, topk_beam_id.unsqueeze(2), dim=1) # [n_prompts, 2 * n_drafts, vocab_size] | |
topk_seq[:, :, cur_pos] = topk_idx | |
topk_finished = topk_idx == self.tokenizer.eos_id | |
# Only update sequences for those that have begun generating | |
new_alive_seq, new_alive_log_probs = self.grow_alive(topk_seq, topk_log_probs, topk_finished) | |
new_fin_seq, new_fin_log_probs = self.grow_fin(topk_seq, topk_log_probs, topk_finished) | |
still_prompt_probs = still_prompt.reshape(-1, 1) | |
still_prompt_seqs = still_prompt.reshape(-1, 1, 1) | |
self.alive_seq = torch.where(still_prompt_seqs, self.alive_seq, new_alive_seq) | |
self.alive_log_probs = torch.where(still_prompt_probs, self.alive_log_probs, new_alive_log_probs) | |
self.fin_seq = torch.where(still_prompt_seqs, self.fin_seq, new_fin_seq) | |
self.fin_log_probs = torch.where(still_prompt_probs, self.fin_log_probs, new_fin_log_probs) | |
# Create superposition matrix and return it | |
topk_idx = self.alive_seq[:, :, cur_pos].reshape(self.n_prompts, -1) | |
token_weights = self.superposition_matrix(topk_idx) | |
return token_weights | |
def grow_alive(self, topk_seq, topk_log_probs, topk_finished): | |
""" | |
Extend running generations. | |
Args: | |
topk_seq (torch.Tensor): Top k sequences (n_prompts, 2 * n_drafts, vocab_size) | |
topk_log_probs (torch.Tensor): Log probabilities (n_prompts, 2 * n_drafts) | |
topk_finished (torch.Tensor): Whether a sequence is finished (n_prompts, 2 * n_drafts) | |
Returns: | |
new_alive_seq, new_alive_log_probs | |
""" | |
topk_log_probs = topk_log_probs + topk_finished * -INF | |
new_alive_log_probs, new_alive_idx = torch.topk(topk_log_probs, self.n_drafts, dim=1) | |
new_alive_seq = torch.take_along_dim(topk_seq, new_alive_idx.unsqueeze(2), dim=1) | |
return new_alive_seq, new_alive_log_probs | |
def grow_fin(self, topk_seq, topk_log_probs, topk_finished): | |
""" | |
Update stopped generations. | |
Args: | |
topk_seq (torch.Tensor): Top k sequences (n_prompts, 2 * n_drafts, vocab_size) | |
topk_log_probs (torch.Tensor): Log probabilities (n_prompts, 2 * n_drafts) | |
topk_finished (torch.Tensor): Whether a sequence is finished (n_prompts, 2 * n_drafts) | |
Returns: | |
new_fin_seq, new_fin_log_probs | |
""" | |
topk_log_probs = topk_log_probs + ~topk_finished * -INF | |
new_fin_seq = torch.cat([self.fin_seq, topk_seq], dim=1) | |
new_fin_log_probs = torch.cat([self.fin_log_probs, topk_log_probs], dim=1) | |
new_fin_log_probs, new_fin_idx = torch.topk(new_fin_log_probs, self.n_drafts, dim=1) | |
new_fin_seq = torch.take_along_dim(new_fin_seq, new_fin_idx.unsqueeze(2), dim=1) | |
return new_fin_seq, new_fin_log_probs | |
def get_top_k(self, probs, m, k): | |
""" | |
Zero out all but top-k tokens in a probability distribution. | |
Args: | |
probs (torch.Tensor): Probability distribution tensor. | |
m (float): Number of tokens to consider (only relevant when sampling). | |
k (int): Number of tokens to sample/keep. | |
Returns: | |
torch.Tensor: New probability distribution based on renormalized probabilities. | |
""" | |
n_prompts, _ = probs.shape | |
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) | |
top_k_mask = torch.arange(probs.shape[-1]) | |
top_k_mask = top_k_mask.expand(probs.shape[0], -1) | |
top_k_mask = top_k_mask >= m # Set to 1 past k elements | |
probs_sort[top_k_mask] = 0.0 # Zero wherever mask = 1 | |
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) | |
next_token = torch.gather(probs_idx, -1, torch.topk(probs_sort, k, dim=-1)[1]) | |
# Set all other probs to 0 | |
new_probs_map = torch.zeros(probs.shape, device="cuda").bool() | |
new_probs_map[torch.repeat_interleave(torch.arange(n_prompts), k), torch.flatten(next_token)] = True | |
new_probs = torch.where(new_probs_map, probs, 0) | |
# Renormalize | |
new_probs.div_(new_probs.sum(dim=-1, keepdim=True)) | |
return new_probs | |
def superposition_matrix(self, tokens): | |
""" | |
Create superposition matrix based on provided tokens. | |
Args: | |
tokens (torch.Tensor): Tokens to mix (n_prompts, n_drafts) | |
Returns: | |
SUperposition matrix | |
""" | |
# Create superposition matrix | |
mixing_matrix = torch.zeros(self.n_prompts, self.vocab_size, device="cuda") | |
# Convert draft log probs to probabilities | |
weightings = log_prob_to_prob(self.alive_log_probs) | |
# Update probabilities in superposition matrix with draft probabilities | |
for p_idx in range(self.n_prompts): | |
for d_idx in range(self.n_drafts): | |
tok_idx = tokens[p_idx][d_idx] | |
mixing_matrix[p_idx][tok_idx] += weightings[p_idx][d_idx] | |
# Renormalize | |
mixing_matrix.div_(mixing_matrix.sum(dim=-1, keepdims=True)) | |
return mixing_matrix | |
def ngram_probs(self, alive_seq, cur_pos, probs): | |
""" | |
Calculate and return next token distribution using ngram models. | |
Args: | |
alive_seq (torch.Tensor): Current drafts (n_prompts, n_drafts, seqlen) | |
cur_pos (int): Current timestep | |
probs (torch.Tensor): Current next probability distribution from model (n_prompts, vocab_size). | |
As described in the paper, only tokens w/nonzero probability in `prob` are considered for the | |
ngram distribution. However, passing in `None` as `probs` will consider all tokens. | |
Returns: | |
Next token distribution for each draft (n_prompts, n_drafts, vocab_size) | |
""" | |
if self.get_time: | |
# Start timer | |
start_time = datetime.now() | |
# Create distribution matrix | |
next_token_probs = torch.zeros(self.n_prompts, self.n_drafts, 32000, device="cuda") | |
if probs is not None: | |
# Loop over all prefixes | |
for p_idx in range(len(alive_seq)): | |
# List of possible tokens for the prefix | |
nz = torch.nonzero(probs[p_idx, :], as_tuple=True)[0].tolist() | |
# Generate next token distribution | |
for draft_idx in range(self.n_drafts): | |
i_mask = torch.sum(torch.tensor(self.i_length) <= cur_pos) | |
new_i_weights = self.interpolation_weights[:i_mask] | |
new_i_length = self.i_length[:i_mask] | |
# For each next token | |
for nt in nz: | |
# Calculate probability using ngram interpolation | |
for i, weight in zip(new_i_length, new_i_weights): | |
if cur_pos - i >= 0: | |
key = tuple(alive_seq[p_idx, draft_idx, cur_pos-i:cur_pos].tolist()) | |
if i == 1: | |
prob = self.bigram.prob(key, nt) | |
elif i == 2: | |
prob = self.trigram.prob(key, nt) | |
elif i == 3: | |
prob = self.fourgram.prob(key, nt) | |
elif i == 4: | |
prob = self.fivegram.prob(key, nt) | |
elif i == 5: | |
prob = self.sixgram.prob(key, nt) | |
elif i == 6: | |
prob = self.sevengram.prob(key, nt) | |
if prob >= 0: | |
next_token_probs[p_idx, draft_idx, nt] += weight * prob | |
else: | |
for p_idx in range(len(alive_seq)): | |
for draft_idx in range(self.n_drafts): | |
i_mask = torch.sum(torch.tensor(self.i_length) <= cur_pos) | |
new_i_weights = self.interpolation_weights[:i_mask] | |
new_i_length = self.i_length[:i_mask] | |
for i, weight in zip(new_i_length, new_i_weights): | |
if cur_pos - i >= 0: | |
key = tuple(alive_seq[p_idx, draft_idx, cur_pos-i:cur_pos].tolist()) | |
if i == 1: | |
ntd = self.bigram.ntd(key) | |
elif i == 2: | |
ntd = self.trigram.ntd(key) | |
elif i == 3: | |
ntd = self.fourgram.ntd(key) | |
elif i == 4: | |
ntd = self.fivegram.ntd(key) | |
elif i == 5: | |
ntd = self.sixgram.ntd(key) | |
elif i == 6: | |
ntd = self.sevengram.ntd(key) | |
if ntd is not None: | |
next_token_probs[p_idx, draft_idx, :] += weight * ntd | |
if self.get_time: | |
total_time = datetime.now() - start_time | |
self.lookup_time = total_time if self.lookup_time is None else self.lookup_time + total_time | |
return next_token_probs | |
def return_results(self, prompt_len=None): | |
""" | |
Return generations and perplexities | |
Args: | |
prompt_len (int): Length of prompt in tokens. If is None, then ppl is not calculated. | |
Returns: | |
(self.alive_seq, alive_ppl), (self.fin_seq, fin_ppl) | |
OR | |
(self.alive_seq, alive_ppl), (self.fin_seq, fin_ppl), self.lookup_time | |
""" | |
# PPL | |
alive_ppl = 0 | |
fin_ppl = 0 | |
if prompt_len is not None: | |
alive_ppl = torch.exp(self.alive_log_probs / (-1 * (self.alive_seq.size(dim=-1)-prompt_len))) | |
# Fin ppl | |
fin_seq_lengths = (self.fin_seq != self.tokenizer.pad_id).sum(dim=-1) | |
fin_ppl = torch.exp(self.fin_log_probs / (-1 * (fin_seq_lengths - prompt_len))) | |
fin_ppl += ((fin_ppl == 0) * float("inf")) | |
# print time | |
if not self.get_time: | |
return (self.alive_seq.to(torch.long), alive_ppl), (self.fin_seq.to(torch.long), fin_ppl) | |
else: | |
return (self.alive_seq.to(torch.long), alive_ppl), (self.fin_seq.to(torch.long), fin_ppl), self.lookup_time |