Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. | |
import json | |
import os | |
import sys | |
import time | |
from pathlib import Path | |
from typing import List, Optional | |
import torch | |
import torch.nn.functional as F | |
from fairscale.nn.model_parallel.initialize import ( | |
get_model_parallel_rank, | |
initialize_model_parallel, | |
model_parallel_is_initialized, | |
) | |
from superposed.llama.model import ModelArgs | |
from superposed.llama.superposed_model import SuperposedTransformer | |
from superposed.llama.tokenizer import Tokenizer | |
from superposed.llama.superpose import Superpose | |
from superposed.llama.utils import * | |
from superposed.ngrams.ngram_models import make_models | |
class SuperposedLlama: | |
def build( | |
ckpt_dir: str, | |
tokenizer_path: str, | |
max_seq_len: int, | |
max_batch_size: int, | |
device = None, | |
model_parallel_size: Optional[int] = None, | |
seed: int = 1, | |
): | |
if not torch.distributed.is_initialized(): | |
torch.distributed.init_process_group("nccl") | |
if not model_parallel_is_initialized(): | |
if model_parallel_size is None: | |
model_parallel_size = int(os.environ.get("WORLD_SIZE", 1)) | |
initialize_model_parallel(model_parallel_size) | |
local_rank = int(os.environ.get("LOCAL_RANK", 0)) | |
if device == None: | |
torch.cuda.set_device(local_rank) | |
device = torch.cuda.current_device() | |
torch.manual_seed(seed) | |
if local_rank > 0: | |
sys.stdout = open(os.devnull, "w") | |
start_time = time.time() | |
checkpoints = sorted(Path(ckpt_dir).glob("*.pth")) | |
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}" | |
assert model_parallel_size == len( | |
checkpoints | |
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}" | |
ckpt_path = checkpoints[get_model_parallel_rank()] | |
checkpoint = torch.load(ckpt_path, map_location="cpu") | |
with open(Path(ckpt_dir) / "params.json", "r") as f: | |
params = json.loads(f.read()) | |
model_args: ModelArgs = ModelArgs( | |
max_seq_len=max_seq_len, | |
max_batch_size=max_batch_size, | |
**params, | |
) | |
tokenizer = Tokenizer(model_path=tokenizer_path) | |
model_args.vocab_size = tokenizer.n_words | |
torch.set_default_tensor_type(torch.cuda.HalfTensor) | |
# Set up superposed decoding | |
model = SuperposedTransformer(model_args) | |
model.load_state_dict(checkpoint, strict=False) | |
print(f"Loaded in {time.time() - start_time:.2f} seconds") | |
return SuperposedLlama(model, tokenizer, device) | |
def __init__(self, model: SuperposedTransformer, tokenizer: Tokenizer, device): | |
print(device) | |
self.model = model.to(device).eval() | |
self.tokenizer = tokenizer | |
self.device = device | |
def sup_generate( | |
self, | |
prompt_tokens: List[List[int]], | |
smoothing, | |
max_gen_len: int, | |
n_token_sample: int, | |
alpha: int, # weight on bigram probs | |
temp: int, | |
n_drafts: int = 1, # number of beams | |
verbose: bool = False, | |
i_weights = None, | |
i_length = None, | |
ngrams = None, | |
get_time: bool = False, | |
penalty = 200 | |
): | |
""" | |
Run multi-sequence generation using superposed embeddings. | |
Args: | |
prompt_tokens (List[List[int]]): Initial tokenized prompts | |
max_gen_len (int): Maximum numbers of tokens to generate | |
alpha (float): Alpha value | |
temp (float): Temperature | |
n_drafts (int): Number of drafts | |
verbose (bool): Whether to save intermediate embeddings for analysis | |
bsz (int): Batch size (default = 16) | |
i_weights (List[float]): Ngram interpolation weights | |
i_length (List[int]): Ngram models to interpolate (1 for bigram, 2 for trigram, etc.) | |
ngrams (Tuple): Ngram models | |
get_time (bool): Return information on time spent doing Ngram lookup | |
penalty (float): Penalty on uninterpolated drafts | |
Returns: | |
(alive_seq, alive_ppl), (fin_seq, fin_ppl): Tuple of (n_prompts, n_drafts, seqlen), | |
(n_prompts, n_drafts) for sequences still generating and sequences that have finished. | |
""" | |
# Check batch size and prompt lengths | |
params = self.model.params | |
bsz = len(prompt_tokens) | |
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size) | |
min_prompt_len = min(len(t) for t in prompt_tokens) | |
max_prompt_len = max(len(t) for t in prompt_tokens) | |
prompt_len = min_prompt_len | |
assert max_prompt_len <= params.max_seq_len | |
total_len = min(params.max_seq_len, max_gen_len + max_prompt_len) | |
pad_id = self.tokenizer.pad_id | |
# Initialize token tensor and pad where necessary | |
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device=self.device) | |
for k, t in enumerate(prompt_tokens): | |
tokens[k, :len(t)] = torch.tensor(t, dtype=torch.long, device=self.device) | |
# If no generation is possible | |
if min_prompt_len == total_len: | |
raise RuntimeError("no generation possible") | |
# Initialize decoding object | |
initial_tokens = tokens.unsqueeze(1).repeat(1, n_drafts, 1) | |
superpose = Superpose(initial_tokens, | |
tokenizer=self.tokenizer, | |
vocab_size=params.vocab_size, | |
smoothing=smoothing, | |
alpha=alpha, | |
i_weights=i_weights, | |
i_length=i_length, | |
ngrams=ngrams, | |
get_time=get_time, | |
penalty=penalty) | |
unseen_first = torch.ones(bsz) | |
# Superposition matrix | |
token_weights = torch.zeros(bsz, self.model.vocab_size) | |
if verbose: | |
state_list = [] | |
prev_pos = 0 | |
# Begin inference | |
for cur_pos in range(min_prompt_len, total_len): | |
input_text_mask = tokens != pad_id | |
# Take model step | |
if cur_pos == min_prompt_len: | |
token_weights = None | |
logits = self.model.forward(tokens[:, prev_pos:cur_pos], | |
start_pos=prev_pos, | |
token_weights=token_weights, | |
verbose=verbose) | |
if verbose: | |
logits, states = logits | |
# Softmax | |
if temp > 0: | |
probs = torch.softmax(logits[:, -1] / temp, dim=-1) | |
else: | |
raise RuntimeError("Temperature must be greater than 0 while mixing") | |
if verbose: | |
states["end_probs"] = probs | |
state_list.append(states) | |
# Flag prompts on first generation | |
is_first = torch.mul(tokens[:, cur_pos] == pad_id, unseen_first) | |
unseen_first[is_first.nonzero(as_tuple=True)[0]] = 0 | |
# Flag prompts not yet generating | |
still_prompt = input_text_mask[:, cur_pos] | |
# Superposition pass | |
token_weights = superpose(probs, still_prompt, is_first, cur_pos, n_token_sample) | |
# Do not superpose for prompts not yet generating | |
keep_idx = input_text_mask[:, cur_pos].ravel().nonzero() | |
keep_token_weights = torch.zeros_like(token_weights) | |
keep_token_weights[keep_idx, tokens[keep_idx, cur_pos]] = 1 | |
token_weights = torch.where(input_text_mask[:, cur_pos].unsqueeze(1).expand(-1, self.model.vocab_size), | |
keep_token_weights, token_weights) | |
prev_pos = cur_pos | |
results = superpose.return_results(prompt_len) | |
if verbose: | |
torch.save(state_list, "../embeddings.pt") | |
return results | |
else: | |
return results |