Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import fairscale.nn.model_parallel.initialize as fs_init | |
import torch | |
import torch.nn.functional as F | |
from fairscale.nn.model_parallel.layers import ( | |
ColumnParallelLinear, | |
ParallelEmbedding, | |
RowParallelLinear, | |
) | |
from torch import nn | |
class ModelArgs: | |
dim: int = 4096 | |
n_layers: int = 32 | |
n_heads: int = 32 | |
n_kv_heads: Optional[int] = None | |
vocab_size: int = -1 # defined later by tokenizer | |
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 | |
ffn_dim_multiplier: Optional[float] = None | |
norm_eps: float = 1e-5 | |
max_batch_size: int = 32 | |
max_seq_len: int = 2048 | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-6): | |
""" | |
Initialize the RMSNorm normalization layer. | |
Args: | |
dim (int): The dimension of the input tensor. | |
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. | |
Attributes: | |
eps (float): A small value added to the denominator for numerical stability. | |
weight (nn.Parameter): Learnable scaling parameter. | |
""" | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
""" | |
Apply the RMSNorm normalization to the input tensor. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The normalized tensor. | |
""" | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
""" | |
Forward pass through the RMSNorm layer. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The output tensor after applying RMSNorm. | |
""" | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): | |
""" | |
Precompute the frequency tensor for complex exponentials (cis) with given dimensions. | |
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' | |
and the end index 'end'. The 'theta' parameter scales the frequencies. | |
The returned tensor contains complex values in complex64 data type. | |
Args: | |
dim (int): Dimension of the frequency tensor. | |
end (int): End index for precomputing frequencies. | |
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0. | |
Returns: | |
torch.Tensor: Precomputed frequency tensor with complex exponentials. | |
""" | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | |
t = torch.arange(end, device=freqs.device) # type: ignore | |
freqs = torch.outer(t, freqs).float() # type: ignore | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 | |
return freqs_cis | |
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | |
""" | |
Reshape frequency tensor for broadcasting it with another tensor. | |
This function reshapes the frequency tensor to have the same shape as the target tensor 'x' | |
for the purpose of broadcasting the frequency tensor during element-wise operations. | |
Args: | |
freqs_cis (torch.Tensor): Frequency tensor to be reshaped. | |
x (torch.Tensor): Target tensor for broadcasting compatibility. | |
Returns: | |
torch.Tensor: Reshaped frequency tensor. | |
Raises: | |
AssertionError: If the frequency tensor doesn't match the expected shape. | |
AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions. | |
""" | |
ndim = x.ndim | |
assert 0 <= 1 < ndim | |
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) | |
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] | |
return freqs_cis.view(*shape) | |
def apply_rotary_emb( | |
xq: torch.Tensor, | |
xk: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Apply rotary embeddings to input tensors using the given frequency tensor. | |
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided | |
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor | |
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are | |
returned as real tensors. | |
Args: | |
xq (torch.Tensor): Query tensor to apply rotary embeddings. | |
xk (torch.Tensor): Key tensor to apply rotary embeddings. | |
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex exponentials. | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. | |
""" | |
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) | |
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) | |
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) | |
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) | |
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) | |
return xq_out.type_as(xq), xk_out.type_as(xk) | |
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: | |
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)""" | |
bs, slen, n_kv_heads, head_dim = x.shape | |
if n_rep == 1: | |
return x | |
return ( | |
x[:, :, :, None, :] | |
.expand(bs, slen, n_kv_heads, n_rep, head_dim) | |
.reshape(bs, slen, n_kv_heads * n_rep, head_dim) | |
) | |
class Attention(nn.Module): | |
"""Multi-head attention module.""" | |
def __init__(self, args: ModelArgs): | |
""" | |
Initialize the Attention module. | |
Args: | |
args (ModelArgs): Model configuration parameters. | |
Attributes: | |
n_kv_heads (int): Number of key and value heads. | |
n_local_heads (int): Number of local query heads. | |
n_local_kv_heads (int): Number of local key and value heads. | |
n_rep (int): Number of repetitions for local heads. | |
head_dim (int): Dimension size of each attention head. | |
wq (ColumnParallelLinear): Linear transformation for queries. | |
wk (ColumnParallelLinear): Linear transformation for keys. | |
wv (ColumnParallelLinear): Linear transformation for values. | |
wo (RowParallelLinear): Linear transformation for output. | |
cache_k (torch.Tensor): Cached keys for attention. | |
cache_v (torch.Tensor): Cached values for attention. | |
""" | |
super().__init__() | |
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads | |
model_parallel_size = fs_init.get_model_parallel_world_size() | |
self.n_local_heads = args.n_heads // model_parallel_size | |
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size | |
self.n_rep = self.n_local_heads // self.n_local_kv_heads | |
self.head_dim = args.dim // args.n_heads | |
self.wq = ColumnParallelLinear( | |
args.dim, | |
args.n_heads * self.head_dim, | |
bias=False, | |
gather_output=False, | |
init_method=lambda x: x, | |
) | |
self.wk = ColumnParallelLinear( | |
args.dim, | |
self.n_kv_heads * self.head_dim, | |
bias=False, | |
gather_output=False, | |
init_method=lambda x: x, | |
) | |
self.wv = ColumnParallelLinear( | |
args.dim, | |
self.n_kv_heads * self.head_dim, | |
bias=False, | |
gather_output=False, | |
init_method=lambda x: x, | |
) | |
self.wo = RowParallelLinear( | |
args.n_heads * self.head_dim, | |
args.dim, | |
bias=False, | |
input_is_parallel=True, | |
init_method=lambda x: x, | |
) | |
self.cache_k = torch.zeros( | |
( | |
args.max_batch_size, | |
args.max_seq_len, | |
self.n_local_kv_heads, | |
self.head_dim, | |
) | |
).cuda() | |
self.cache_v = torch.zeros( | |
( | |
args.max_batch_size, | |
args.max_seq_len, | |
self.n_local_kv_heads, | |
self.head_dim, | |
) | |
).cuda() | |
def forward( | |
self, | |
x: torch.Tensor, | |
start_pos: int, | |
freqs_cis: torch.Tensor, | |
mask: Optional[torch.Tensor], | |
beam: Optional[bool] = None, | |
n_beams: Optional[int] = None, | |
attention_change_ids: Optional[torch.Tensor] = None | |
): | |
""" | |
Forward pass of the attention module. | |
Args: | |
x (torch.Tensor): Input tensor. | |
start_pos (int): Starting position for caching. | |
freqs_cis (torch.Tensor): Precomputed frequency tensor. | |
mask (torch.Tensor, optional): Attention mask tensor. | |
Returns: | |
torch.Tensor: Output tensor after attention. | |
""" | |
bsz, seqlen, _ = x.shape | |
_, max_seq_len, n_local_kv_heads, head_dim = self.cache_k.shape | |
# KV Cache updates for beam search | |
if beam: | |
# Extract used cache values | |
used_cache_k = self.cache_k[:bsz] | |
used_cache_v = self.cache_v[:bsz] | |
# Reshape to apply change ids | |
t_cache_k = used_cache_k.reshape(bsz // n_beams, n_beams, max_seq_len, n_local_kv_heads, head_dim) | |
t_cache_v = used_cache_v.reshape(bsz // n_beams, n_beams, max_seq_len, n_local_kv_heads, head_dim) | |
used_cache_k = torch.take_along_dim(t_cache_k, attention_change_ids.reshape(-1, n_beams, 1, 1, 1), 1) | |
used_cache_v = torch.take_along_dim(t_cache_v, attention_change_ids.reshape(-1, n_beams, 1, 1, 1), 1) | |
# Update cache | |
self.cache_k[:bsz] = used_cache_k.reshape(bsz, max_seq_len, n_local_kv_heads, head_dim) | |
self.cache_v[:bsz] = used_cache_v.reshape(bsz, max_seq_len, n_local_kv_heads, head_dim) | |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) | |
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) | |
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) | |
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) | |
self.cache_k = self.cache_k.to(xq) | |
self.cache_v = self.cache_v.to(xq) | |
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk | |
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv | |
keys = self.cache_k[:bsz, : start_pos + seqlen] | |
values = self.cache_v[:bsz, : start_pos + seqlen] | |
# repeat k/v heads if n_kv_heads < n_heads | |
keys = repeat_kv(keys, self.n_rep) # (bs, seqlen, n_local_heads, head_dim) | |
values = repeat_kv(values, self.n_rep) # (bs, seqlen, n_local_heads, head_dim) | |
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim) | |
keys = keys.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim) | |
values = values.transpose(1, 2) | |
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) # (bs, n_local_heads, seqlen, seqlen) | |
if mask is not None: | |
scores = scores + mask # (bs, n_local_heads, seqlen, seqlen) | |
scores = F.softmax(scores.float(), dim=-1).type_as(xq) # (bs, n_local_heads, seqlen, seqlen) | |
output = torch.matmul(scores, values) # (bs, n_local_heads, seqlen, head_dim) | |
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) | |
return self.wo(output) | |
class FeedForward(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
hidden_dim: int, | |
multiple_of: int, | |
ffn_dim_multiplier: Optional[float], | |
): | |
""" | |
Initialize the FeedForward module. | |
Args: | |
dim (int): Input dimension. | |
hidden_dim (int): Hidden dimension of the feedforward layer. | |
multiple_of (int): Value to ensure hidden dimension is a multiple of this value. | |
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. | |
Attributes: | |
w1 (ColumnParallelLinear): Linear transformation for the first layer. | |
w2 (RowParallelLinear): Linear transformation for the second layer. | |
w3 (ColumnParallelLinear): Linear transformation for the third layer. | |
""" | |
super().__init__() | |
hidden_dim = int(2 * hidden_dim / 3) | |
# custom dim factor multiplier | |
if ffn_dim_multiplier is not None: | |
hidden_dim = int(ffn_dim_multiplier * hidden_dim) | |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
self.w1 = ColumnParallelLinear( | |
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x | |
) | |
self.w2 = RowParallelLinear( | |
hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x | |
) | |
self.w3 = ColumnParallelLinear( | |
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x | |
) | |
def forward(self, x): | |
return self.w2(F.silu(self.w1(x)) * self.w3(x)) | |
class TransformerBlock(nn.Module): | |
def __init__(self, layer_id: int, args: ModelArgs): | |
""" | |
Initialize a TransformerBlock. | |
Args: | |
layer_id (int): Identifier for the layer. | |
args (ModelArgs): Model configuration parameters. | |
Attributes: | |
n_heads (int): Number of attention heads. | |
dim (int): Dimension size of the model. | |
head_dim (int): Dimension size of each attention head. | |
attention (Attention): Attention module. | |
feed_forward (FeedForward): FeedForward module. | |
layer_id (int): Identifier for the layer. | |
attention_norm (RMSNorm): Layer normalization for attention output. | |
ffn_norm (RMSNorm): Layer normalization for feedforward output. | |
""" | |
super().__init__() | |
self.n_heads = args.n_heads | |
self.dim = args.dim | |
self.head_dim = args.dim // args.n_heads | |
self.attention = Attention(args) | |
self.feed_forward = FeedForward( | |
dim=args.dim, | |
hidden_dim=4 * args.dim, | |
multiple_of=args.multiple_of, | |
ffn_dim_multiplier=args.ffn_dim_multiplier, | |
) | |
self.layer_id = layer_id | |
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) | |
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) | |
def forward( | |
self, | |
x: torch.Tensor, | |
start_pos: int, | |
freqs_cis: torch.Tensor, | |
mask: Optional[torch.Tensor], | |
beam: Optional[bool], | |
n_beams: Optional[int] = None, | |
attention_change_ids: Optional[torch.Tensor] = None | |
): | |
""" | |
Perform a forward pass through the TransformerBlock. | |
Args: | |
x (torch.Tensor): Input tensor. | |
start_pos (int): Starting position for attention caching. | |
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies. | |
mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None. | |
Returns: | |
torch.Tensor: Output tensor after applying attention and feedforward layers. | |
""" | |
if beam: | |
h = x + self.attention.forward( | |
self.attention_norm(x), start_pos, freqs_cis, mask, beam, n_beams, attention_change_ids | |
) | |
else: | |
h = x + self.attention.forward( | |
self.attention_norm(x), start_pos, freqs_cis, mask | |
) | |
out = h + self.feed_forward.forward(self.ffn_norm(h)) | |
return out | |
class Transformer(nn.Module): | |
def __init__(self, params: ModelArgs): | |
""" | |
Initialize a Transformer model. | |
Args: | |
params (ModelArgs): Model configuration parameters. | |
Attributes: | |
params (ModelArgs): Model configuration parameters. | |
vocab_size (int): Vocabulary size. | |
n_layers (int): Number of layers in the model. | |
tok_embeddings (ParallelEmbedding): Token embeddings. | |
layers (torch.nn.ModuleList): List of Transformer blocks. | |
norm (RMSNorm): Layer normalization for the model output. | |
output (ColumnParallelLinear): Linear layer for final output. | |
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies. | |
""" | |
super().__init__() | |
self.params = params | |
self.vocab_size = params.vocab_size | |
self.n_layers = params.n_layers | |
self.tok_embeddings = ParallelEmbedding( | |
params.vocab_size, params.dim, init_method=lambda x: x | |
) | |
self.layers = torch.nn.ModuleList() | |
for layer_id in range(params.n_layers): | |
self.layers.append(TransformerBlock(layer_id, params)) | |
self.norm = RMSNorm(params.dim, eps=params.norm_eps) | |
self.output = ColumnParallelLinear( | |
params.dim, params.vocab_size, bias=False, init_method=lambda x: x | |
) | |
self.freqs_cis = precompute_freqs_cis( | |
# Note that self.params.max_seq_len is multiplied by 2 because the token limit for the Llama 2 generation of models is 4096. | |
# Adding this multiplier instead of using 4096 directly allows for dynamism of token lengths while training or fine-tuning. | |
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2 | |
) | |
def forward(self, | |
tokens: torch.Tensor, | |
start_pos: int, | |
beam: bool, | |
n_beams: Optional[int] = None, | |
attention_change_ids: Optional[torch.Tensor] = None, | |
verbose: Optional[bool] = False): | |
""" | |
Perform a forward pass through the Transformer model. | |
Args: | |
tokens (torch.Tensor): Input token indices. | |
start_pos (int): Starting position for attention caching. | |
verbose (bool): Whether to return intermediate hidden layer states | |
Returns: | |
torch.Tensor or (torch.Tensor, Dict): output logits after applying the Transformer model. | |
""" | |
### ANALYSIS CODE ### | |
if verbose: | |
states = {"layers": [], "tokens": tokens} | |
# | |
_bsz, seqlen = tokens.shape | |
h = self.tok_embeddings(tokens) | |
self.freqs_cis = self.freqs_cis.to(h.device) | |
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] | |
### ANALYSIS CODE ### | |
if verbose: | |
states["layers"].append(h) | |
# | |
mask = None | |
if seqlen > 1: | |
mask = torch.full( | |
(1, 1, seqlen, seqlen), float("-inf"), device=tokens.device | |
) | |
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h) | |
for layer in self.layers: | |
if not beam: | |
h = layer(h, start_pos, freqs_cis, mask, beam) | |
else: | |
h = layer(h, start_pos, freqs_cis, mask, beam, n_beams, attention_change_ids) | |
### ANALYSIS CODE ### | |
if verbose: | |
states["layers"].append(h) | |
# | |
h = self.norm(h) | |
# if want differences, at end, subtract differences from [-1] position of embedding vectors each iteration | |
### ANALYSIS CODE ### | |
if verbose: | |
states["layers"].append(h) | |
# | |
output = self.output(h).float() | |
if verbose: | |
return output, states | |
else: | |
return output | |