Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification | |
import time | |
model_name = "ethanrom/a2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
pretrained_model_name = "roberta-large-mnli" | |
pretrained_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name) | |
pretrained_model = pipeline("zero-shot-classification", model=pretrained_model_name, tokenizer=pretrained_tokenizer) | |
candidate_labels = ["negative", "positive", "no impact", "mixed"] | |
def predict_sentiment(text_input, model_selection): | |
if model_selection == "Fine-tuned": | |
inputs = tokenizer.encode_plus(text_input, return_tensors='pt') | |
start_time = time.time() | |
outputs = model(**inputs) | |
end_time = time.time() | |
logits = outputs.logits.detach().cpu().numpy()[0] | |
predicted_class = int(logits.argmax()) | |
inference_time = end_time - start_time | |
model_size = model.num_parameters() | |
return candidate_labels[predicted_class], inference_time, model_size | |
else: | |
start_time = time.time() | |
result = pretrained_model(text_input, candidate_labels) | |
end_time = time.time() | |
predicted_class = result["labels"][0] | |
inference_time = end_time - start_time | |
model_size = pretrained_tokenizer.model_max_length + pretrained_model.model.num_parameters() | |
return candidate_labels[predicted_class], inference_time, model_size | |
inputs = [ | |
gr.inputs.Textbox("Enter text"), | |
gr.inputs.Dropdown(["Pretrained", "Fine-tuned"], label="Select model"), | |
] | |
outputs = [ | |
gr.outputs.Textbox(label="Predicted Sentiment"), | |
gr.outputs.Textbox(label="Inference Time (s)"), | |
gr.outputs.Textbox(label="Model Size (params)"), | |
] | |
gr.Interface(fn=predict_sentiment, inputs=inputs, outputs=outputs, title="Sentiment Analysis", description="Compare the output, inference time, and model size of two models").launch(); | |