Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,64 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
|
4 |
-
# Load the fine-tuned model and tokenizer
|
5 |
model_name = "ethanrom/a2"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
|
9 |
-
# Load the pretrained model and tokenizer
|
10 |
pretrained_model_name = "roberta-large-mnli"
|
11 |
pretrained_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name)
|
12 |
pretrained_model = pipeline("zero-shot-classification", model=pretrained_model_name, tokenizer=pretrained_tokenizer)
|
13 |
candidate_labels = ["negative", "positive", "no impact", "mixed"]
|
14 |
|
|
|
|
|
|
|
15 |
|
16 |
def predict_sentiment(text_input, model_selection):
|
|
|
|
|
|
|
17 |
if model_selection == "Fine-tuned":
|
18 |
-
# Use the fine-tuned model
|
19 |
inputs = tokenizer.encode_plus(text_input, return_tensors='pt')
|
20 |
outputs = model(**inputs)
|
21 |
logits = outputs.logits.detach().cpu().numpy()[0]
|
22 |
predicted_class = int(logits.argmax())
|
23 |
-
|
|
|
24 |
else:
|
25 |
-
# Use the pretrained model
|
26 |
result = pretrained_model(text_input, candidate_labels)
|
27 |
predicted_class = result["labels"][0]
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
inputs = [
|
31 |
gr.inputs.Textbox("Enter text"),
|
32 |
gr.inputs.Dropdown(["Pretrained", "Fine-tuned"], label="Select model"),
|
33 |
]
|
34 |
|
35 |
-
outputs =
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
gr.Interface(fn=predict_sentiment, inputs=inputs, outputs=outputs,
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
["thy hands all cunning arts that women prize", "Pretrained Model"],
|
43 |
-
["on us lift up the light", "Fine-tuned Model"],
|
44 |
-
],).launch();
|
|
|
1 |
import gradio as gr
|
2 |
+
import time
|
3 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
4 |
|
|
|
5 |
model_name = "ethanrom/a2"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
|
|
|
9 |
pretrained_model_name = "roberta-large-mnli"
|
10 |
pretrained_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name)
|
11 |
pretrained_model = pipeline("zero-shot-classification", model=pretrained_model_name, tokenizer=pretrained_tokenizer)
|
12 |
candidate_labels = ["negative", "positive", "no impact", "mixed"]
|
13 |
|
14 |
+
accuracy_scores = {"Fine-tuned": 0.0, "Pretrained": 0.0}
|
15 |
+
model_sizes = {"Fine-tuned": 0, "Pretrained": 0}
|
16 |
+
inference_times = {"Fine-tuned": 0.0, "Pretrained": 0.0}
|
17 |
|
18 |
def predict_sentiment(text_input, model_selection):
|
19 |
+
global accuracy_scores, model_sizes, inference_times
|
20 |
+
|
21 |
+
start_time = time.time()
|
22 |
if model_selection == "Fine-tuned":
|
|
|
23 |
inputs = tokenizer.encode_plus(text_input, return_tensors='pt')
|
24 |
outputs = model(**inputs)
|
25 |
logits = outputs.logits.detach().cpu().numpy()[0]
|
26 |
predicted_class = int(logits.argmax())
|
27 |
+
accuracy_scores[model_selection] += 1 if candidate_labels[predicted_class] == "positive" else 0
|
28 |
+
model_sizes[model_selection] = model.num_parameters()
|
29 |
else:
|
|
|
30 |
result = pretrained_model(text_input, candidate_labels)
|
31 |
predicted_class = result["labels"][0]
|
32 |
+
accuracy_scores[model_selection] += 1 if predicted_class == 1 else 0
|
33 |
+
model_sizes[model_selection] = pretrained_model.model.num_parameters()
|
34 |
+
end_time = time.time()
|
35 |
+
inference_times[model_selection] = end_time - start_time
|
36 |
+
|
37 |
+
return candidate_labels[predicted_class]
|
38 |
+
|
39 |
+
def accuracy(model_selection):
|
40 |
+
return accuracy_scores[model_selection]/10
|
41 |
+
|
42 |
+
def model_size(model_selection):
|
43 |
+
return str(model_sizes[model_selection]//(1024*1024)) + " MB"
|
44 |
+
|
45 |
+
def inference_time(model_selection):
|
46 |
+
return str(inference_times[model_selection]*1000) + " ms"
|
47 |
|
48 |
inputs = [
|
49 |
gr.inputs.Textbox("Enter text"),
|
50 |
gr.inputs.Dropdown(["Pretrained", "Fine-tuned"], label="Select model"),
|
51 |
]
|
52 |
|
53 |
+
outputs = [
|
54 |
+
gr.outputs.Textbox(label="Predicted Sentiment"),
|
55 |
+
gr.outputs.Label(label="Accuracy:"),
|
56 |
+
gr.outputs.Label(label="Model Size:"),
|
57 |
+
gr.outputs.Label(label="Inference Time:")
|
58 |
+
]
|
59 |
|
60 |
+
gr.Interface(fn=predict_sentiment, inputs=inputs, outputs=outputs,
|
61 |
+
title="Sentiment Analysis", description="Compare the output of two models",
|
62 |
+
live=True,
|
63 |
+
examples=[["on us lift up the light", "Fine-tuned"], ["max laid his hand upon the old man's arm", "Pretrained"]]
|
64 |
+
).launch();
|
|
|
|
|
|