import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification # Load the fine-tuned model and tokenizer model_name = "ethanrom/a2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Load the pretrained model and tokenizer pretrained_model_name = "roberta-large-mnli" pretrained_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name) pretrained_model = pipeline("zero-shot-classification", model=pretrained_model_name, tokenizer=pretrained_tokenizer) candidate_labels = ["negative", "positive", "no impact", "mixed"] def predict_sentiment(text_input, model_selection): if model_selection == "Fine-tuned": # Use the fine-tuned model inputs = tokenizer.encode_plus(text_input, return_tensors='pt') outputs = model(**inputs) logits = outputs.logits.detach().cpu().numpy()[0] predicted_class = int(logits.argmax()) return candidate_labels[predicted_class] else: # Use the pretrained model result = pretrained_model(text_input, candidate_labels) predicted_class = result["labels"][0] return predicted_class inputs = [ gr.inputs.Textbox("Enter text"), gr.inputs.Dropdown(["Pretrained", "Fine-tuned"], label="Select model"), ] outputs = gr.outputs.Textbox(label="Predicted Sentiment") gr.Interface(fn=predict_sentiment, inputs=inputs, outputs=outputs, title="Sentiment Analysis", description="Compare the output of two models", examples=[ ["max laid his hand upon the old man's arm", "Pretrained Model"], ["the red sword sealed their vows!", "Fine-tuned Model"], ["and that is why, the lonesome day,", "Pretrained Model"], ["it flows so long as falls the rain", "Fine-tuned Model"], ["thy hands all cunning arts that women prize", "Pretrained Model"], ["on us lift up the light", "Fine-tuned Model"], ],).launch();