Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
from transformers import pipeline | |
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") | |
def predict(input_img): | |
predictions = pipeline(input_img) | |
return input_img, {p["label"]: p["score"] for p in predictions} | |
_HEADER_ = ''' | |
<h2>Toon3D: Seeing Cartoons from a New Perspective</h2> | |
**Toon3D** lifts cartoons into 3D via aligning and warping backprojected monocular depth predictions.. | |
Project page @ <a href='https://toon3d.studio/' target='_blank'>https://toon3d.studio/</a> | |
**Important Notes:** | |
- Our demo can export a .obj mesh with vertex colors or a .glb mesh now. If you prefer to export a .obj mesh with a **texture map**, please refer to our <a href='https://github.com/TencentARC/InstantMesh?tab=readme-ov-file#running-with-command-line' target='_blank'>Github Repo</a>. | |
- The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42). | |
''' | |
gradio_app = gr.Interface( | |
predict, | |
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"), | |
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)], | |
title="Toon3D", | |
) | |
with gr.Blocks() as demo: | |
gr.Markdown(_HEADER_) | |
with gr.Row(variant="panel"): | |
with gr.Column(): | |
with gr.Row(): | |
input = gr.File(file_count="directory") | |
if __name__ == "__main__": | |
demo.launch() | |