gusnet-v1-demo / app.py
maximuspowers's picture
Update app.py
eccfda3 verified
import json
import torch
from transformers import BertTokenizerFast, BertForTokenClassification
import gradio as gr
# Initialize tokenizer and model
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = BertForTokenClassification.from_pretrained('ethical-spectacle/social-bias-ner')
model.eval()
model.to('cuda' if torch.cuda.is_available() else 'cpu')
# Mapping IDs to labels
id2label = {
0: 'O',
1: 'B-STEREO',
2: 'I-STEREO',
3: 'B-GEN',
4: 'I-GEN',
5: 'B-UNFAIR',
6: 'I-UNFAIR'
}
# Entity colors for highlights
label_colors = {
"STEREO": "rgba(255, 0, 0, 0.2)", # Light Red
"GEN": "rgba(0, 0, 255, 0.2)", # Light Blue
"UNFAIR": "rgba(0, 255, 0, 0.2)" # Light Green
}
# Post-process entity tags
def post_process_entities(result):
prev_entity_type = None
for token_data in result:
labels = token_data["labels"]
# Handle sequence rules
new_labels = []
for label_data in labels:
label = label_data['label']
if label.startswith("B-") and prev_entity_type == label[2:]:
new_labels.append({"label": f"I-{label[2:]}", "confidence": label_data["confidence"]})
elif label.startswith("I-") and prev_entity_type != label[2:]:
new_labels.append({"label": f"B-{label[2:]}", "confidence": label_data["confidence"]})
else:
new_labels.append(label_data)
prev_entity_type = label[2:]
token_data["labels"] = new_labels
return result
# Generate HTML matrix and JSON results with probabilities
def predict_ner_tags_with_json(sentence):
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
input_ids = inputs['input_ids'].to(model.device)
attention_mask = inputs['attention_mask'].to(model.device)
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits
probabilities = torch.sigmoid(logits)
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
result = []
for i, token in enumerate(tokens):
if token not in tokenizer.all_special_tokens:
label_indices = (probabilities[0][i] > 0.52).nonzero(as_tuple=False).squeeze(-1)
labels = [
{
"label": id2label[idx.item()],
"confidence": round(probabilities[0][i][idx].item() * 100, 2)
}
for idx in label_indices
]
result.append({"token": token.replace("##", ""), "labels": labels})
result = post_process_entities(result)
# Create table rows
word_row = []
stereo_row = []
gen_row = []
unfair_row = []
for token_data in result:
token = token_data["token"]
labels = token_data["labels"]
word_row.append(f"<span style='font-weight:bold;'>{token}</span>")
# STEREO
stereo_labels = [
f"{label_data['label'][2:]} ({label_data['confidence']}%)" for label_data in labels if "STEREO" in label_data["label"]
]
stereo_row.append(
f"<span style='background:{label_colors['STEREO']}; border-radius:6px; padding:2px 5px;'>{', '.join(stereo_labels)}</span>"
if stereo_labels else "&nbsp;"
)
# GEN
gen_labels = [
f"{label_data['label'][2:]} ({label_data['confidence']}%)" for label_data in labels if "GEN" in label_data["label"]
]
gen_row.append(
f"<span style='background:{label_colors['GEN']}; border-radius:6px; padding:2px 5px;'>{', '.join(gen_labels)}</span>"
if gen_labels else "&nbsp;"
)
# UNFAIR
unfair_labels = [
f"{label_data['label'][2:]} ({label_data['confidence']}%)" for label_data in labels if "UNFAIR" in label_data["label"]
]
unfair_row.append(
f"<span style='background:{label_colors['UNFAIR']}; border-radius:6px; padding:2px 5px;'>{', '.join(unfair_labels)}</span>"
if unfair_labels else "&nbsp;"
)
matrix_html = f"""
<table style='border-collapse:collapse; width:100%; font-family:monospace; text-align:left;'>
<tr>
<td><strong>Text Sequence</strong></td>
{''.join(f"<td>{word}</td>" for word in word_row)}
</tr>
<tr>
<td><strong>Generalizations</strong></td>
{''.join(f"<td>{cell}</td>" for cell in gen_row)}
</tr>
<tr>
<td><strong>Unfairness</strong></td>
{''.join(f"<td>{cell}</td>" for cell in unfair_row)}
</tr>
<tr>
<td><strong>Stereotypes</strong></td>
{''.join(f"<td>{cell}</td>" for cell in stereo_row)}
</tr>
</table>
"""
# JSON string
json_result = json.dumps(result, indent=4)
return f"{matrix_html}<br><pre>{json_result}</pre>"
# Gradio Interface
iface = gr.Blocks()
with iface:
with gr.Row():
gr.Markdown(
"""
# GUS-Net 🕵
[GUS-Net](https://huggingface.co/ethical-spectacle/social-bias-ner) is a `BertForTokenClassification` based model, trained on the [GUS dataset](https://huggingface.co/datasets/ethical-spectacle/gus-dataset-v1). It preforms multi-label named-entity recognition of socially biased entities, intended to reveal the underlying structure of bias rather than a one-size fits all definition.
You can find the full collection of resources introduced in our paper [here](https://huggingface.co/collections/ethical-spectacle/gus-net-66edfe93801ea45d7a26a10f).
This [blog post](https://huggingface.co/blog/maximuspowers/bias-entity-recognition) walks through the training and architecture of the model.
Enter a sentence for named-entity recognition of biased entities:
- **Generalizations (GEN)**
- **Unfairness (UNFAIR)**
- **Stereotypes (STEREO)**
Labels follow the BIO format. Try it out:
"""
)
with gr.Row():
input_box = gr.Textbox(label="Input Sentence")
with gr.Row():
output_box = gr.HTML(label="Entity Matrix and JSON Output")
input_box.change(predict_ner_tags_with_json, inputs=[input_box], outputs=[output_box])
iface.launch(share=True)