Spaces:
Runtime error
Runtime error
File size: 7,858 Bytes
8c7c98a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
"""
general utility functions for loading, saving, etc
"""
import os
from pathlib import Path
import pprint as pp
import re
import shutil # zipfile formats
from datetime import datetime
from os.path import basename
from os.path import getsize, join
import requests
from cleantext import clean
from natsort import natsorted
from symspellpy import SymSpell
import pandas as pd
from tqdm.auto import tqdm
def get_timestamp():
return datetime.now().strftime("%b-%d-%Y_t-%H")
def correct_phrase_load(my_string: str):
"""
correct_phrase_load [basic / unoptimized implementation of SymSpell to correct a string]
Args:
my_string (str): [text to be corrected]
Returns:
[type]: [description]
"""
sym_spell = SymSpell(max_dictionary_edit_distance=2, prefix_length=7)
dictionary_path = (
r"symspell_rsc/frequency_dictionary_en_82_765.txt" # from repo root
)
bigram_path = (
r"symspell_rsc/frequency_bigramdictionary_en_243_342.txt" # from repo root
)
# term_index is the column of the term and count_index is the
# column of the term frequency
sym_spell.load_dictionary(dictionary_path, term_index=0, count_index=1)
sym_spell.load_bigram_dictionary(bigram_path, term_index=0, count_index=2)
# max edit distance per lookup (per single word, not per whole input string)
suggestions = sym_spell.lookup_compound(
clean(my_string), max_edit_distance=2, ignore_non_words=True
)
if len(suggestions) < 1:
return my_string
else:
first_result = suggestions[0]
return first_result._term
def fast_scandir(dirname: str):
"""
fast_scandir [an os.path-based means to return all subfolders in a given filepath]
Args:
dirname (str): [description]
Returns:
[list]: [description]
"""
subfolders = [f.path for f in os.scandir(dirname) if f.is_dir()]
for dirname in list(subfolders):
subfolders.extend(fast_scandir(dirname))
return subfolders # list
def create_folder(directory: str):
os.makedirs(directory, exist_ok=True)
def chunks(lst: list, n: int):
"""
chunks - Yield successive n-sized chunks from lst
Args:
lst (list): [description]
n (int): [description]
Yields:
[type]: [description]
"""
for i in range(0, len(lst), n):
yield lst[i : i + n]
def chunky_pandas(my_df, num_chunks: int = 4):
"""
chunky_pandas [split dataframe into `num_chunks` equal chunks, return each inside a list]
Args:
my_df (pd.DataFrame): [description]
num_chunks (int, optional): [description]. Defaults to 4.
Returns:
[type]: [description]
"""
n = int(len(my_df) // num_chunks)
list_df = [my_df[i : i + n] for i in range(0, my_df.shape[0], n)]
return list_df
def load_dir_files(
directory: str, req_extension=".txt", return_type="list", verbose=False
):
"""
load_dir_files - an os.path based method of returning all files with extension `req_extension` in a given directory and subdirectories
Args:
directory (str): [description]
req_extension (str, optional): [description]. Defaults to ".txt".
return_type (str, optional): [description]. Defaults to "list".
verbose (bool, optional): [description]. Defaults to False.
Returns:
[type]: [description]
"""
appr_files = []
# r=root, d=directories, f = files
for r, d, f in os.walk(directory):
for prefile in f:
if prefile.endswith(req_extension):
fullpath = os.path.join(r, prefile)
appr_files.append(fullpath)
appr_files = natsorted(appr_files)
if verbose:
print("A list of files in the {} directory are: \n".format(directory))
if len(appr_files) < 10:
pp.pprint(appr_files)
else:
pp.pprint(appr_files[:10])
print("\n and more. There are a total of {} files".format(len(appr_files)))
if return_type.lower() == "list":
return appr_files
else:
if verbose:
print("returning dictionary")
appr_file_dict = {}
for this_file in appr_files:
appr_file_dict[basename(this_file)] = this_file
return appr_file_dict
def URL_string_filter(text):
"""
URL_string_filter - filter out nonstandard "text" characters
Args:
text ([type]): [description]
Returns:
[str]: [description]
"""
custom_printable = (
"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ._"
)
filtered = "".join((filter(lambda i: i in custom_printable, text)))
return filtered
def getFilename_fromCd(cd):
if not cd:
return None
fname = re.findall("filename=(.+)", cd)
if len(fname) > 0:
output = fname[0]
elif cd.find("/"):
possible_fname = cd.rsplit("/", 1)[1]
output = URL_string_filter(possible_fname)
else:
output = None
return output
def get_zip_URL(
URLtoget: str,
extract_loc: str = None,
file_header: str = "dropboxexport_",
verbose: bool = False,
):
"""
get_zip_URL [summary]
Args:
URLtoget (str): [description]
extract_loc (str, optional): [description]. Defaults to None.
file_header (str, optional): [description]. Defaults to "dropboxexport_".
verbose (bool, optional): [description]. Defaults to False.
Returns:
[type]: [description]
"""
r = requests.get(URLtoget, allow_redirects=True)
names = getFilename_fromCd(r.headers.get("content-disposition"))
fixed_fnames = names.split(";") # split the multiple results
this_filename = file_header + URL_string_filter(fixed_fnames[0])
# define paths and save the zip file
if extract_loc is None:
extract_loc = "dropbox_dl"
dl_place = join(os.getcwd(), extract_loc)
create_folder(dl_place)
save_loc = join(os.getcwd(), this_filename)
open(save_loc, "wb").write(r.content)
if verbose:
print("downloaded file size was {} MB".format(getsize(save_loc) / 1000000))
# unpack the archive
shutil.unpack_archive(save_loc, extract_dir=dl_place)
if verbose:
print("extracted zip file - ", datetime.now())
x = load_dir_files(dl_place, req_extension="", verbose=verbose)
# remove original
try:
os.remove(save_loc)
del save_loc
except:
print("unable to delete original zipfile - check if exists", datetime.now())
print("finished extracting zip - ", datetime.now())
return dl_place
def merge_dataframes(data_dir: str, ext=".xlsx", verbose=False):
"""
merge_dataframes - given a filepath, loads and attempts to merge all files as dataframes
Args:
data_dir (str): [root directory to search in]
ext (str, optional): [anticipate file extension for the dataframes ]. Defaults to '.xlsx'.
Returns:
pd.DataFrame(): merged dataframe
"""
src = Path(data_dir)
src_str = str(src.resolve())
mrg_df = pd.DataFrame()
all_reports = load_dir_files(directory=src_str, req_extension=ext, verbose=verbose)
failed = []
for df_path in tqdm(all_reports, total=len(all_reports), desc="joining data..."):
try:
this_df = pd.read_excel(df_path).convert_dtypes()
mrg_df = pd.concat([mrg_df, this_df], axis=0)
except:
short_p = os.path.basename(df_path)
print(
f"WARNING - file with extension {ext} and name {short_p} could not be read."
)
failed.append(short_p)
if len(failed) > 0:
print("failed to merge {} files, investigate as needed")
if verbose:
pp.pprint(mrg_df.info(True))
return mrg_df
|