File size: 38,320 Bytes
2c41ede
0ef1e7a
 
679c889
0ef1e7a
 
 
b4e520b
0ef1e7a
 
c648d0c
0ef1e7a
c648d0c
0ef1e7a
 
c648d0c
0ef1e7a
c648d0c
0ef1e7a
 
 
 
c648d0c
0ef1e7a
 
 
 
 
 
 
 
b4e520b
 
e1ccf49
b4e520b
 
 
e1ccf49
b4e520b
0ef1e7a
b4e520b
e1ccf49
b4e520b
 
 
 
e1ccf49
b4e520b
e1ccf49
 
 
 
 
 
 
 
b4e520b
 
 
e1ccf49
 
 
 
 
 
b4e520b
 
 
 
e1ccf49
b4e520b
e1ccf49
b4e520b
 
e1ccf49
b4e520b
e1ccf49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
e1ccf49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
47e2a7c
e1ccf49
 
b4e520b
e1ccf49
 
 
 
 
b4e520b
 
e1ccf49
 
 
47e2a7c
e1ccf49
b4e520b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef1e7a
 
47e2a7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a4bd7
 
 
 
47e2a7c
d6a4bd7
47e2a7c
d6a4bd7
47e2a7c
 
d6a4bd7
 
 
 
 
 
 
 
 
 
47e2a7c
 
 
 
 
 
 
d6a4bd7
 
47e2a7c
 
 
 
 
 
 
 
 
d6a4bd7
47e2a7c
d6a4bd7
 
 
 
 
 
 
 
47e2a7c
d6a4bd7
 
 
 
 
 
47e2a7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef1e7a
b4e520b
0ef1e7a
a17b4f2
 
 
 
 
 
 
b4e520b
 
 
0ef1e7a
 
b4e520b
 
0ef1e7a
 
b4e520b
 
0ef1e7a
b4e520b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef1e7a
b4e520b
 
0ef1e7a
b4e520b
 
0ef1e7a
b4e520b
 
 
 
 
0ef1e7a
b4e520b
 
 
 
 
 
 
0ef1e7a
b4e520b
 
0ef1e7a
b4e520b
0ef1e7a
b4e520b
 
 
0ef1e7a
 
 
b4e520b
0ef1e7a
b4e520b
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef1e7a
4951634
 
d6a4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7745d43
47e2a7c
e1ccf49
 
 
 
 
 
 
 
 
9ddc325
e1ccf49
0ef1e7a
9ddc325
e1ccf49
 
 
7745d43
 
e1ccf49
 
 
9ddc325
 
e1ccf49
 
 
9ddc325
0ef1e7a
b4e520b
e1ccf49
0ef1e7a
b4e520b
e1ccf49
0ef1e7a
9ddc325
b4e520b
e1ccf49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
e1ccf49
 
9ddc325
e1ccf49
 
 
 
 
9ddc325
e1ccf49
 
 
 
4951634
e1ccf49
9ddc325
e1ccf49
 
 
 
 
 
9ddc325
 
 
 
 
e1ccf49
 
 
 
d6a4bd7
 
 
 
 
 
 
 
9ddc325
 
e1ccf49
9ddc325
d6a4bd7
 
 
 
 
 
 
 
7745d43
 
e1ccf49
7745d43
0ef1e7a
e1ccf49
0ef1e7a
b4e520b
0ef1e7a
 
 
 
b4e520b
 
0ef1e7a
b4e520b
 
 
 
 
 
 
0ef1e7a
b4e520b
 
0ef1e7a
b4e520b
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef1e7a
 
b4e520b
 
 
 
0ef1e7a
 
b4e520b
 
 
 
 
 
 
 
 
 
 
0ef1e7a
b4e520b
 
 
 
0ef1e7a
b4e520b
 
 
0ef1e7a
b4e520b
0ef1e7a
 
b4e520b
0ef1e7a
 
 
 
 
b4e520b
0ef1e7a
 
b4e520b
 
 
 
 
0ef1e7a
 
b4e520b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef1e7a
b4e520b
0ef1e7a
b4e520b
 
 
0ef1e7a
 
b4e520b
 
 
0ef1e7a
d6a4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef1e7a
 
b4e520b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef1e7a
 
 
d6a4bd7
2272752
 
 
 
 
 
 
0ef1e7a
679c889
2272752
 
679c889
 
d6a4bd7
679c889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7745d43
679c889
 
 
 
 
 
7745d43
679c889
 
7745d43
679c889
2272752
 
7745d43
679c889
 
7745d43
 
679c889
 
 
 
 
 
 
e1ccf49
679c889
0ef1e7a
5484524
 
 
 
 
 
0ef1e7a
679c889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
import traceback

@dataclass
class UserPreferences:

    """使用者偏好設定的資料結構"""
    living_space: str  # "apartment", "house_small", "house_large"
    yard_access: str  # "no_yard", "shared_yard", "private_yard" 
    exercise_time: int  # minutes per day
    exercise_type: str  # "light_walks", "moderate_activity", "active_training" 
    grooming_commitment: str  # "low", "medium", "high"
    experience_level: str  # "beginner", "intermediate", "advanced"
    time_availability: str  # "limited", "moderate", "flexible" 
    has_children: bool
    children_age: str  # "toddler", "school_age", "teenager"
    noise_tolerance: str  # "low", "medium", "high"
    space_for_play: bool
    other_pets: bool
    climate: str  # "cold", "moderate", "hot"
    health_sensitivity: str = "medium"
    barking_acceptance: str = None

    def __post_init__(self):
        """在初始化後運行,用於設置派生值"""
        if self.barking_acceptance is None:
            self.barking_acceptance = self.noise_tolerance


@staticmethod
def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
    """計算品種額外加分"""
    bonus = 0.0
    temperament = breed_info.get('Temperament', '').lower()
    
    # 1. 壽命加分(最高0.05)
    try:
        lifespan = breed_info.get('Lifespan', '10-12 years')
        years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
        longevity_bonus = min(0.05, (max(years) - 10) * 0.01)
        bonus += longevity_bonus
    except:
        pass

    # 2. 性格特徵加分(最高0.15)
    positive_traits = {
        'friendly': 0.05,           
        'gentle': 0.05,
        'patient': 0.05,
        'intelligent': 0.04,
        'adaptable': 0.04,
        'affectionate': 0.04,
        'easy-going': 0.03,         
        'calm': 0.03                
    }
    
    negative_traits = {
        'aggressive': -0.08,        
        'stubborn': -0.06,
        'dominant': -0.06,
        'aloof': -0.04,
        'nervous': -0.05,           
        'protective': -0.04         
    }
    
    personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament)
    personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament)
    bonus += max(-0.15, min(0.15, personality_score))

    # 3. 適應性加分(最高0.1)
    adaptability_bonus = 0.0
    if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
        adaptability_bonus += 0.05
    if 'adaptable' in temperament or 'versatile' in temperament:
        adaptability_bonus += 0.05
    bonus += min(0.1, adaptability_bonus)

    # 4. 家庭相容性(最高0.1)
    if user_prefs.has_children:
        family_traits = {
            'good with children': 0.06,  
            'patient': 0.05,
            'gentle': 0.05,
            'tolerant': 0.04,           
            'playful': 0.03             
        }
        unfriendly_traits = {
            'aggressive': -0.08,        
            'nervous': -0.07,
            'protective': -0.06,
            'territorial': -0.05        
        }
        
        # 年齡評估這樣能更細緻
        age_adjustments = {
            'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3},
            'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0},
            'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8}
        }
        
        adj = age_adjustments.get(user_prefs.children_age, 
                                {'bonus_mult': 1.0, 'penalty_mult': 1.0})
        
        family_bonus = sum(value for trait, value in family_traits.items() 
                          if trait in temperament) * adj['bonus_mult']
        family_penalty = sum(value for trait, value in unfriendly_traits.items() 
                           if trait in temperament) * adj['penalty_mult']
        
        bonus += min(0.15, max(-0.2, family_bonus + family_penalty))

    
    # 5. 專門技能加分(最高0.1)
    skill_bonus = 0.0
    special_abilities = {
        'working': 0.03,
        'herding': 0.03,
        'hunting': 0.03,
        'tracking': 0.03,
        'agility': 0.02
    }
    for ability, value in special_abilities.items():
        if ability in temperament.lower():
            skill_bonus += value
    bonus += min(0.1, skill_bonus)

    return min(0.5, max(-0.25, bonus))


@staticmethod
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
    """計算額外的評估因素"""
    factors = {
        'versatility': 0.0,        # 多功能性
        'trainability': 0.0,       # 可訓練度
        'energy_level': 0.0,       # 能量水平
        'grooming_needs': 0.0,     # 美容需求
        'social_needs': 0.0,       # 社交需求
        'weather_adaptability': 0.0 # 氣候適應性
    }
    
    temperament = breed_info.get('Temperament', '').lower()
    size = breed_info.get('Size', 'Medium')
    
    # 1. 多功能性評估
    versatile_traits = ['intelligent', 'adaptable', 'trainable', 'athletic']
    working_roles = ['working', 'herding', 'hunting', 'sporting', 'companion']
    
    trait_score = sum(0.2 for trait in versatile_traits if trait in temperament)
    role_score = sum(0.2 for role in working_roles if role in breed_info.get('Description', '').lower())
    
    factors['versatility'] = min(1.0, trait_score + role_score)
    
    # 2. 可訓練度評估
    trainable_traits = {
        'intelligent': 0.3,
        'eager to please': 0.3,
        'trainable': 0.2,
        'quick learner': 0.2
    }
    factors['trainability'] = min(1.0, sum(value for trait, value in trainable_traits.items() 
                                         if trait in temperament))
    
    # 3. 能量水平評估
    exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
    energy_levels = {
        'VERY HIGH': 1.0,
        'HIGH': 0.8,
        'MODERATE': 0.6,
        'LOW': 0.4,
        'VARIES': 0.6
    }
    factors['energy_level'] = energy_levels.get(exercise_needs, 0.6)
    
    # 4. 美容需求評估
    grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
    grooming_levels = {
        'HIGH': 1.0,
        'MODERATE': 0.6,
        'LOW': 0.3
    }
    coat_penalty = 0.2 if any(term in breed_info.get('Description', '').lower() 
                             for term in ['long coat', 'double coat']) else 0
    factors['grooming_needs'] = min(1.0, grooming_levels.get(grooming_needs, 0.6) + coat_penalty)
    
    # 5. 社交需求評估
    social_traits = ['friendly', 'social', 'affectionate', 'people-oriented']
    antisocial_traits = ['independent', 'aloof', 'reserved']
    
    social_score = sum(0.25 for trait in social_traits if trait in temperament)
    antisocial_score = sum(-0.2 for trait in antisocial_traits if trait in temperament)
    factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))
    
    # 6. 氣候適應性評估
    climate_terms = {
        'cold': ['thick coat', 'winter', 'cold climate'],
        'hot': ['short coat', 'warm climate', 'heat tolerant'],
        'moderate': ['adaptable', 'all climate']
    }
    
    climate_matches = sum(1 for term in climate_terms[user_prefs.climate] 
                        if term in breed_info.get('Description', '').lower())
    factors['weather_adaptability'] = min(1.0, climate_matches * 0.3 + 0.4)  # 基礎分0.4

    return factors


@staticmethod
def calculate_family_safety_score(breed_info: dict, children_age: str) -> float:
    """
    計算品種與家庭/兒童的安全相容性分數,作為calculate_compatibility_score的一部分
    
    參數:
    breed_info (dict): 品種資訊
    children_age (str): 兒童年齡組別 ('toddler', 'school_age', 'teenager')
    
    返回:
    float: 0.2-0.95之間的安全分數
    """
    temperament = breed_info.get('Temperament', '').lower()
    size = breed_info.get('Size', 'Medium')
    
    # 基礎安全分數(根據體型)
    base_safety_scores = {
        "Small": 0.80,     # 從 0.85 降至 0.80
        "Medium": 0.65,    # 從 0.75 降至 0.65
        "Large": 0.50,     # 從 0.65 降至 0.50
        "Giant": 0.40      # 從 0.55 降至 0.40
    }
    safety_score = base_safety_scores.get(size, 0.60)
    
    # 加強年齡相關的調整力度
    age_factors = {
        'toddler': {
            'base_modifier': -0.25,  # 從 -0.15 降至 -0.25
            'size_penalty': {
                "Small": -0.10,      # 從 -0.05 降至 -0.10
                "Medium": -0.20,     # 從 -0.10 降至 -0.20
                "Large": -0.30,      # 從 -0.20 降至 -0.30
                "Giant": -0.35       # 從 -0.25 降至 -0.35
            }
        },
        'school_age': {
            'base_modifier': -0.15,  # 從 -0.08 降至 -0.15
            'size_penalty': {
                "Small": -0.05,
                "Medium": -0.10,
                "Large": -0.20,
                "Giant": -0.25
            }
        },
        'teenager': {
            'base_modifier': -0.08,  # 從 -0.05 降至 -0.08
            'size_penalty': {
                "Small": -0.02,
                "Medium": -0.05,
                "Large": -0.10,
                "Giant": -0.15
            }
        }
    }
    
    # 加強對危險特徵的評估
    dangerous_traits = {
        'aggressive': -0.35,      # 從 -0.25 加重到 -0.35
        'territorial': -0.30,     # 從 -0.20 加重到 -0.30
        'protective': -0.25,      # 從 -0.15 加重到 -0.25
        'nervous': -0.25,         # 從 -0.15 加重到 -0.25
        'dominant': -0.20,        # 從 -0.15 加重到 -0.20
        'strong-willed': -0.18,   # 從 -0.12 加重到 -0.18
        'independent': -0.15,     # 從 -0.10 加重到 -0.15
        'energetic': -0.12       # 從 -0.08 加重到 -0.12
    }

    # 特殊風險評估加重
    if 'history of' in breed_info.get('Description', '').lower():
        safety_score -= 0.25      # 從 -0.15 加重到 -0.25
    if 'requires experienced' in breed_info.get('Description', '').lower():
        safety_score -= 0.20      # 從 -0.10 加重到 -0.20
    
    # 計算特徵分數
    for trait, bonus in positive_traits.items():
        if trait in temperament:
            safety_score += bonus * 0.8  # 降低正面特徵的影響力
            
    for trait, penalty in dangerous_traits.items():
        if trait in temperament:
            # 對幼童加重懲罰
            if children_age == 'toddler':
                safety_score += penalty * 1.3
            # 對青少年略微減輕懲罰
            elif children_age == 'teenager':
                safety_score += penalty * 0.8
            else:
                safety_score += penalty
    
    # 特殊風險評估
    description = breed_info.get('Description', '').lower()
    if 'history of' in description:
        safety_score -= 0.15
    if 'requires experienced' in description:
        safety_score -= 0.10
    
    # 將分數限制在合理範圍內
    return max(0.2, min(0.95, safety_score))


def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
    """計算品種與使用者條件的相容性分數的優化版本"""
    try:
        print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
        print(f"Breed info keys: {breed_info.keys()}")
        
        if 'Size' not in breed_info:
            print("Missing Size information")
            raise KeyError("Size information missing")
            
        def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
            """空間分數計算"""
            # 基礎空間需求矩陣
            base_scores = {
                "Small": {"apartment": 0.95, "house_small": 1.0, "house_large": 0.90},
                "Medium": {"apartment": 0.60, "house_small": 0.90, "house_large": 1.0},
                "Large": {"apartment": 0.30, "house_small": 0.75, "house_large": 1.0},
                "Giant": {"apartment": 0.15, "house_small": 0.55, "house_large": 1.0}
            }
            
            # 取得基礎分數
            base_score = base_scores.get(size, base_scores["Medium"])[living_space]
            
            # 運動需求調整
            exercise_adjustments = {
                "Very High": -0.15 if living_space == "apartment" else 0,
                "High": -0.10 if living_space == "apartment" else 0,
                "Moderate": 0,
                "Low": 0.05 if living_space == "apartment" else 0
            }
            
            adjustments = exercise_adjustments.get(exercise_needs.strip(), 0)
            
            # 院子獎勵
            if has_yard and size in ["Large", "Giant"]:
                adjustments += 0.10
            elif has_yard:
                adjustments += 0.05
                
            return min(1.0, max(0.1, base_score + adjustments))

        def calculate_exercise_score(breed_needs: str, user_time: int) -> float:
            """運動需求計算"""
            exercise_needs = {
                'VERY HIGH': {'min': 120, 'ideal': 150, 'max': 180},
                'HIGH': {'min': 90, 'ideal': 120, 'max': 150},
                'MODERATE': {'min': 45, 'ideal': 60, 'max': 90},
                'LOW': {'min': 20, 'ideal': 30, 'max': 45},
                'VARIES': {'min': 30, 'ideal': 60, 'max': 90}
            }
            
            breed_need = exercise_needs.get(breed_needs.strip().upper(), exercise_needs['MODERATE'])
            
            # 計算匹配度
            if user_time >= breed_need['ideal']:
                if user_time > breed_need['max']:
                    return 0.9  # 稍微降分,因為可能過度運動
                return 1.0
            elif user_time >= breed_need['min']:
                return 0.8 + (user_time - breed_need['min']) / (breed_need['ideal'] - breed_need['min']) * 0.2
            else:
                return max(0.3, 0.8 * (user_time / breed_need['min']))

        def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
            """美容需求計算"""
            # 基礎分數矩陣
            base_scores = {
                "High": {"low": 0.3, "medium": 0.7, "high": 1.0},
                "Moderate": {"low": 0.5, "medium": 0.9, "high": 1.0},
                "Low": {"low": 1.0, "medium": 0.95, "high": 0.8}
            }
            
            # 取得基礎分數
            base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
            
            # 體型影響調整
            size_adjustments = {
                "Large": {"low": -0.2, "medium": -0.1, "high": 0},
                "Giant": {"low": -0.3, "medium": -0.15, "high": 0},
            }
            
            if breed_size in size_adjustments:
                adjustment = size_adjustments[breed_size].get(user_commitment, 0)
                base_score = max(0.2, base_score + adjustment)
                
            return base_score
            

        # def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
        #     """
        #     計算使用者經驗與品種需求的匹配分數
            
        #     參數說明:
        #     care_level: 品種的照顧難度 ("High", "Moderate", "Low")
        #     user_experience: 使用者經驗等級 ("beginner", "intermediate", "advanced") 
        #     temperament: 品種的性格特徵描述
            
        #     返回:
        #     float: 0.2-1.0 之間的匹配分數
        #     """
        #     # 基礎分數矩陣 - 更大的分數差異來反映經驗重要性
        #     base_scores = {
        #         "High": {
        #             "beginner": 0.12,     # 降低起始分,反映高難度品種對新手的挑戰
        #             "intermediate": 0.65,  # 中級玩家可以應付,但仍有改善空間
        #             "advanced": 1.0       # 資深者能完全勝任
        #         },
        #         "Moderate": {
        #             "beginner": 0.35,    # 適中難度對新手來說仍具挑戰
        #             "intermediate": 0.82, # 中級玩家有很好的勝任能力
        #             "advanced": 1.0      # 資深者完全勝任
        #         },
        #         "Low": {
        #             "beginner": 0.72,    # 低難度品種適合新手
        #             "intermediate": 0.92, # 中級玩家幾乎完全勝任
        #             "advanced": 1.0      # 資深者完全勝任
        #         }
        #     }
            
        #     # 取得基礎分數
        #     score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
            
        #     # 性格特徵評估 - 根據經驗等級調整權重
        #     temperament_lower = temperament.lower()
        #     temperament_adjustments = 0.0
            
        #     if user_experience == "beginner":
        #         # 新手不適合的特徵 - 更嚴格的懲罰
        #         difficult_traits = {
        #             'stubborn': -0.15,      # 加重固執的懲罰
        #             'independent': -0.12,    # 加重獨立性的懲罰
        #             'dominant': -0.12,       # 加重支配性的懲罰
        #             'strong-willed': -0.10,  # 加重強勢的懲罰
        #             'protective': -0.08,     # 加重保護性的懲罰
        #             'aloof': -0.08,         # 加重冷漠的懲罰
        #             'energetic': -0.06      # 輕微懲罰高能量
        #         }
                
        #         # 新手友善的特徵 - 提供更多獎勵
        #         easy_traits = {
        #             'gentle': 0.08,          # 增加溫和的獎勵
        #             'friendly': 0.08,        # 增加友善的獎勵
        #             'eager to please': 0.08, # 增加順從的獎勵
        #             'patient': 0.06,         # 獎勵耐心
        #             'adaptable': 0.06,       # 獎勵適應性
        #             'calm': 0.05            # 獎勵冷靜
        #         }
                
        #         # 計算特徵調整
        #         for trait, penalty in difficult_traits.items():
        #             if trait in temperament_lower:
        #                 temperament_adjustments += penalty * 1.2  # 加重新手的懲罰
                
        #         for trait, bonus in easy_traits.items():
        #             if trait in temperament_lower:
        #                 temperament_adjustments += bonus
                        
        #         # 品種特殊調整
        #         if any(term in temperament_lower for term in ['terrier', 'working', 'guard']):
        #             temperament_adjustments -= 0.12  # 加重對特定類型品種的懲罰
                    
        #     elif user_experience == "intermediate":
        #         # 中級玩家的調整更加平衡
        #         moderate_traits = {
        #             'intelligent': 0.05,     # 獎勵聰明
        #             'athletic': 0.04,        # 獎勵運動能力
        #             'versatile': 0.04,       # 獎勵多功能性
        #             'stubborn': -0.06,       # 輕微懲罰固執
        #             'independent': -0.05,    # 輕微懲罰獨立性
        #             'protective': -0.04      # 輕微懲罰保護性
        #         }
                
        #         for trait, adjustment in moderate_traits.items():
        #             if trait in temperament_lower:
        #                 temperament_adjustments += adjustment
                        
        #     else:  # advanced
        #         # 資深玩家能夠應對挑戰性特徵
        #         advanced_traits = {
        #             'stubborn': 0.04,        # 反轉為優勢
        #             'independent': 0.04,      # 反轉為優勢
        #             'intelligent': 0.05,      # 獎勵聰明
        #             'protective': 0.04,       # 獎勵保護性
        #             'strong-willed': 0.03    # 獎勵強勢
        #         }
                
        #         for trait, bonus in advanced_traits.items():
        #             if trait in temperament_lower:
        #                 temperament_adjustments += bonus
            
        #     # 確保最終分數在合理範圍內
        #     final_score = max(0.2, min(1.0, score + temperament_adjustments))
        #     return final_score


        def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
            """
            計算使用者經驗與品種需求的匹配分數
            
            參數說明:
            care_level: 品種的照顧難度 ("High", "Moderate", "Low")
            user_experience: 使用者經驗等級 ("beginner", "intermediate", "advanced") 
            temperament: 品種的性格特徵描述
            
            返回:
            float: 0.2-1.0 之間的匹配分數
            """
            # 基礎分數矩陣 - 更大的分數差異來反映經驗重要性
            base_scores = {
                "High": {
                    "beginner": 0.12,     # 降低起始分,反映高難度品種對新手的挑戰
                    "intermediate": 0.65,  # 中級玩家可以應付,但仍有改善空間
                    "advanced": 1.0       # 資深者能完全勝任
                },
                "Moderate": {
                    "beginner": 0.35,    # 適中難度對新手來說仍具挑戰
                    "intermediate": 0.82, # 中級玩家有很好的勝任能力
                    "advanced": 1.0      # 資深者完全勝任
                },
                "Low": {
                    "beginner": 0.72,    # 低難度品種適合新手
                    "intermediate": 0.92, # 中級玩家幾乎完全勝任
                    "advanced": 1.0      # 資深者完全勝任
                }
            }
            
            # 取得基礎分數
            score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
            
            # 性格特徵評估 - 根據經驗等級調整權重
            temperament_lower = temperament.lower()
            temperament_adjustments = 0.0
            
            if user_experience == "beginner":
                # 新手不適合的特徵 - 更嚴格的懲罰
                difficult_traits = {
                    'stubborn': -0.15,      # 加重固執的懲罰
                    'independent': -0.12,    # 加重獨立性的懲罰
                    'dominant': -0.12,       # 加重支配性的懲罰
                    'strong-willed': -0.10,  # 加重強勢的懲罰
                    'protective': -0.08,     # 加重保護性的懲罰
                    'aloof': -0.08,         # 加重冷漠的懲罰
                    'energetic': -0.06      # 輕微懲罰高能量
                }
                
                # 新手友善的特徵 - 提供更多獎勵
                easy_traits = {
                    'gentle': 0.08,          # 增加溫和的獎勵
                    'friendly': 0.08,        # 增加友善的獎勵
                    'eager to please': 0.08, # 增加順從的獎勵
                    'patient': 0.06,         # 獎勵耐心
                    'adaptable': 0.06,       # 獎勵適應性
                    'calm': 0.05            # 獎勵冷靜
                }
                
                # 計算特徵調整
                for trait, penalty in difficult_traits.items():
                    if trait in temperament_lower:
                        temperament_adjustments += penalty * 1.2  # 加重新手的懲罰
                
                for trait, bonus in easy_traits.items():
                    if trait in temperament_lower:
                        temperament_adjustments += bonus
                        
                # 品種特殊調整
                if any(term in temperament_lower for term in ['terrier', 'working', 'guard']):
                    temperament_adjustments -= 0.12  # 加重對特定類型品種的懲罰
                    
            elif user_experience == "intermediate":
                # 中級玩家的調整更加平衡
                moderate_traits = {
                    'intelligent': 0.05,     # 獎勵聰明
                    'athletic': 0.04,        # 獎勵運動能力
                    'versatile': 0.04,       # 獎勵多功能性
                    'stubborn': -0.06,       # 輕微懲罰固執
                    'independent': -0.05,    # 輕微懲罰獨立性
                    'protective': -0.04      # 輕微懲罰保護性
                }
                
                for trait, adjustment in moderate_traits.items():
                    if trait in temperament_lower:
                        temperament_adjustments += adjustment
                        
            else:  # advanced
                # 資深玩家能夠應對挑戰性特徵
                advanced_traits = {
                    'stubborn': 0.02,        # 降低加分幅度
                    'independent': 0.02,     
                    'intelligent': 0.05,     
                    'protective': 0.02,      
                    'strong-willed': 0.02,   
                    'aggressive': -0.04,     # 新增負面特徵
                    'nervous': -0.03,        
                    'dominant': -0.02        
                }
                
                for trait, bonus in advanced_traits.items():
                    if trait in temperament_lower:
                        # 加入條件評估
                        if bonus > 0:  # 正面特徵
                            # 限制正面特徵的累積加分不超過0.15
                            if temperament_adjustments + bonus <= 0.15:
                                temperament_adjustments += bonus
                        else:  # 負面特徵
                            # 負面特徵一定要計算
                            temperament_adjustments += bonus
            
            # 確保最終分數在合理範圍內
            final_score = max(0.2, min(1.0, score + temperament_adjustments))
            return final_score


        def calculate_health_score(breed_name: str) -> float:
            """計算品種健康分數"""
            if breed_name not in breed_health_info:
                return 0.5

            health_notes = breed_health_info[breed_name]['health_notes'].lower()
            
            # 嚴重健康問題(降低0.15分)
            severe_conditions = [
                'hip dysplasia',
                'heart disease',
                'progressive retinal atrophy',
                'bloat',
                'epilepsy',
                'degenerative myelopathy',
                'von willebrand disease'
            ]
            
            # 中度健康問題(降低0.1分)
            moderate_conditions = [
                'allergies',
                'eye problems',
                'joint problems',
                'hypothyroidism',
                'ear infections',
                'skin issues'
            ]
            
            # 輕微健康問題(降低0.05分)
            minor_conditions = [
                'dental issues',
                'weight gain tendency',
                'minor allergies',
                'seasonal allergies'
            ]

            # 計算基礎健康分數
            health_score = 1.0
            
            # 根據問題嚴重程度扣分
            severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
            moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)
            minor_count = sum(1 for condition in minor_conditions if condition in health_notes)
            
            health_score -= (severe_count * 0.15)
            health_score -= (moderate_count * 0.1)
            health_score -= (minor_count * 0.05)

            # 壽命影響
            try:
                lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
                years = float(lifespan.split('-')[0])
                if years < 8:
                    health_score *= 0.9
                elif years > 13:
                    health_score *= 1.1
            except:
                pass

            # 特殊健康優勢
            if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
                health_score *= 1.1

            return max(0.2, min(1.0, health_score))

        def calculate_noise_score(breed_name: str, user_noise_tolerance: str) -> float:
            """計算品種噪音分數"""
            if breed_name not in breed_noise_info:
                return 0.5

            noise_info = breed_noise_info[breed_name]
            noise_level = noise_info['noise_level'].lower()
            noise_notes = noise_info['noise_notes'].lower()

            # 基礎噪音分數矩陣
            base_scores = {
                'low': {'low': 1.0, 'medium': 0.9, 'high': 0.8},
                'medium': {'low': 0.7, 'medium': 1.0, 'high': 0.9},
                'high': {'low': 0.4, 'medium': 0.7, 'high': 1.0},
                'varies': {'low': 0.6, 'medium': 0.8, 'high': 0.9}
            }

            # 獲取基礎分數
            base_score = base_scores.get(noise_level, {'low': 0.7, 'medium': 0.8, 'high': 0.6})[user_noise_tolerance]

            # 吠叫原因評估
            barking_reasons_penalty = 0
            problematic_triggers = [
                ('separation anxiety', -0.15),
                ('excessive barking', -0.12),
                ('territorial', -0.08),
                ('alert barking', -0.05),
                ('attention seeking', -0.05)
            ]

            for trigger, penalty in problematic_triggers:
                if trigger in noise_notes:
                    barking_reasons_penalty += penalty

            # 可訓練性補償
            trainability_bonus = 0
            if 'responds well to training' in noise_notes:
                trainability_bonus = 0.1
            elif 'can be trained' in noise_notes:
                trainability_bonus = 0.05

            # 特殊情況
            special_adjustments = 0
            if 'rarely barks' in noise_notes:
                special_adjustments += 0.1
            if 'howls' in noise_notes and user_noise_tolerance == 'low':
                special_adjustments -= 0.1

            final_score = base_score + barking_reasons_penalty + trainability_bonus + special_adjustments
            
            return max(0.2, min(1.0, final_score))

        # # 計算所有基礎分數
        # scores = {
        #     'space': calculate_space_score(
        #         breed_info['Size'], 
        #         user_prefs.living_space,
        #         user_prefs.space_for_play,
        #         breed_info.get('Exercise Needs', 'Moderate')
        #     ),
        #     'exercise': calculate_exercise_score(
        #         breed_info.get('Exercise Needs', 'Moderate'),
        #         user_prefs.exercise_time
        #     ),
        #     'grooming': calculate_grooming_score(
        #         breed_info.get('Grooming Needs', 'Moderate'),
        #         user_prefs.grooming_commitment.lower(),
        #         breed_info['Size']
        #     ),
        #     'experience': calculate_experience_score(
        #         breed_info.get('Care Level', 'Moderate'),
        #         user_prefs.experience_level,
        #         breed_info.get('Temperament', '')
        #     ),
        #     'health': calculate_health_score(breed_info.get('Breed', '')),
        #     'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
        # }


        # # 優化權重配置
        # weights = {
        #     'space': 0.28,      
        #     'exercise': 0.18,   
        #     'grooming': 0.12,   
        #     'experience': 0.22, 
        #     'health': 0.12,     
        #     'noise': 0.08      
        # }

        # # 計算加權總分
        # weighted_score = sum(score * weights[category] for category, score in scores.items())

        # def amplify_score(score):
        #     """
        #     優化分數放大函數,確保分數範圍合理且結果一致
        #     """
        #     # 基礎調整
        #     adjusted = (score - 0.35) * 1.8
            
        #     # 使用 3.2 次方使曲線更平滑
        #     amplified = pow(adjusted, 3.2) / 5.8 + score
            
        #     # 特別處理高分區間,確保不超過95%
        #     if amplified > 0.90:
        #         # 壓縮高分區間,確保最高到95%
        #         amplified = 0.90 + (amplified - 0.90) * 0.5
            
        #     # 確保最終分數在合理範圍內(0.55-0.95)
        #     final_score = max(0.55, min(0.95, amplified))
            
        #     # 四捨五入到小數點後第三位
        #     return round(final_score, 3)
        
        # final_score = amplify_score(weighted_score)

        # # 四捨五入所有分數
        # scores = {k: round(v, 4) for k, v in scores.items()}
        # scores['overall'] = round(final_score, 4)

        # return scores

        # 計算所有基礎分數
        scores = {
            'space': calculate_space_score(
                breed_info['Size'], 
                user_prefs.living_space,
                user_prefs.space_for_play,
                breed_info.get('Exercise Needs', 'Moderate')
            ),
            'exercise': calculate_exercise_score(
                breed_info.get('Exercise Needs', 'Moderate'),
                user_prefs.exercise_time
            ),
            'grooming': calculate_grooming_score(
                breed_info.get('Grooming Needs', 'Moderate'),
                user_prefs.grooming_commitment.lower(),
                breed_info['Size']
            ),
            'experience': calculate_experience_score(
                breed_info.get('Care Level', 'Moderate'),
                user_prefs.experience_level,
                breed_info.get('Temperament', '')
            ),
            'health': calculate_health_score(breed_info.get('Breed', '')),
            'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
        }
        
        weights = {
            'space': 0.28,      
            'exercise': 0.18,   
            'grooming': 0.12,   
            'experience': 0.22, 
            'health': 0.12,     
            'noise': 0.08      
        }

        # 計算基礎加權分數
        weighted_score = sum(score * weights[category] for category, score in scores.items())

        # 如果有孩童,加入家庭安全考量
        if user_prefs.has_children:
            try:
                family_safety = calculate_family_safety_score(breed_info, user_prefs.children_age)
                # family_safety 作為調整因子,而不是新的分數項目
                # 這裡的 0.4 表示 family_safety 最多可以降低 60% 的分數
                safety_modifier = (family_safety * 0.6) + 0.4
                weighted_score *= safety_modifier
            except Exception as e:
                print(f"Family safety calculation error: {str(e)}")
                # 發生錯誤時使用較保守的預設值
                weighted_score *= 0.7

        # 加入品種加分的影響
        try:
            breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
            # breed_bonus 作為加成效果,但限制其影響範圍
            bonus_modifier = 1 + (breed_bonus * 0.3)  # 品種加分最多提升 30%
            weighted_score *= bonus_modifier
        except Exception as e:
            print(f"Breed bonus calculation error: {str(e)}")

        def amplify_score(score):
            """
            優化後的分數放大函數,確保分數範圍合理且結果一致。
            主要目的是將分數轉換到更容易理解的範圍,並增加差異性。
            """
            # 基礎調整 - 降低基準點使差異更明顯
            adjusted = (score - 0.25) * 1.8
            
            # 使用較溫和的指數來放大差異,但不會過度誇大
            amplified = pow(adjusted, 2.2) / 3.5 + score
            
            # 處理高分區間,避免分數過度集中
            if amplified > 0.85:
                amplified = 0.85 + (amplified - 0.85) * 0.6
            
            # 確保分數在合理範圍內(0.45-0.95)
            final_score = max(0.45, min(0.95, amplified))
            
            return round(final_score, 3)

        # 計算最終分數
        final_score = amplify_score(weighted_score)
        
        # 準備回傳結果
        scores = {k: round(v, 4) for k, v in scores.items()}
        scores['overall'] = round(final_score, 4)
        
        return scores

    # except Exception as e:
    #     print(f"Error details: {str(e)}")
    #     print(f"breed_info: {breed_info}")
    #     # print(f"Error in calculate_compatibility_score: {str(e)}")
    #     return {k: 0.5 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}

    except Exception as e:
        print(f"Critical error in compatibility score calculation:")
        print(f"Error type: {type(e).__name__}")
        print(f"Error message: {str(e)}")
        print(f"Breed info: {breed_info}")
        print(f"User preferences: {user_prefs.__dict__}")
        
        # 嘗試返回已計算的分數,若完全失敗則返回預設值
        try:
            return scores
        except:
            return {
                'space': 0.7,
                'exercise': 0.7,
                'grooming': 0.7,
                'experience': 0.7,
                'health': 0.7,
                'noise': 0.7,
                'overall': 0.7
            }