Spaces:
Sleeping
Sleeping
# import os | |
# import numpy as np | |
# import torch | |
# import torch.nn as nn | |
# import gradio as gr | |
# import time | |
# from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights | |
# from torchvision.ops import nms, box_iou | |
# import torch.nn.functional as F | |
# from torchvision import transforms | |
# from PIL import Image, ImageDraw, ImageFont, ImageFilter | |
# from breed_health_info import breed_health_info | |
# from breed_noise_info import breed_noise_info | |
# from dog_database import get_dog_description, dog_data | |
# from scoring_calculation_system import UserPreferences | |
# from recommendation_html_format import format_recommendation_html, get_breed_recommendations | |
# from history_manager import UserHistoryManager | |
# from search_history import create_history_tab, create_history_component | |
# from styles import get_css_styles | |
# from breed_detection import create_detection_tab | |
# from breed_comparison import create_comparison_tab | |
# from breed_recommendation import create_recommendation_tab | |
# from html_templates import ( | |
# format_description_html, | |
# format_single_dog_result, | |
# format_multiple_breeds_result, | |
# format_error_message, | |
# format_warning_html, | |
# format_multi_dog_container, | |
# format_breed_details_html, | |
# get_color_scheme, | |
# get_akc_breeds_link | |
# ) | |
# from urllib.parse import quote | |
# from ultralytics import YOLO | |
# import asyncio | |
# import traceback | |
# model_yolo = YOLO('yolov8l.pt') | |
# history_manager = UserHistoryManager() | |
# dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier", | |
# "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise", | |
# "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres", | |
# "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever", | |
# "Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter", | |
# "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd", | |
# "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees", | |
# "Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier", | |
# "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel", | |
# "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa", | |
# "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound", | |
# "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian", | |
# "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed", | |
# "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu", | |
# "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel", | |
# "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner", | |
# "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier", | |
# "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound", | |
# "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber", | |
# "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo", | |
# "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond", | |
# "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher", | |
# "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone", | |
# "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle", | |
# "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet", | |
# "Wire-Haired_Fox_Terrier"] | |
# class MultiHeadAttention(nn.Module): | |
# def __init__(self, in_dim, num_heads=8): | |
# super().__init__() | |
# self.num_heads = num_heads | |
# self.head_dim = max(1, in_dim // num_heads) | |
# self.scaled_dim = self.head_dim * num_heads | |
# self.fc_in = nn.Linear(in_dim, self.scaled_dim) | |
# self.query = nn.Linear(self.scaled_dim, self.scaled_dim) | |
# self.key = nn.Linear(self.scaled_dim, self.scaled_dim) | |
# self.value = nn.Linear(self.scaled_dim, self.scaled_dim) | |
# self.fc_out = nn.Linear(self.scaled_dim, in_dim) | |
# def forward(self, x): | |
# N = x.shape[0] | |
# x = self.fc_in(x) | |
# q = self.query(x).view(N, self.num_heads, self.head_dim) | |
# k = self.key(x).view(N, self.num_heads, self.head_dim) | |
# v = self.value(x).view(N, self.num_heads, self.head_dim) | |
# energy = torch.einsum("nqd,nkd->nqk", [q, k]) | |
# attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2) | |
# out = torch.einsum("nqk,nvd->nqd", [attention, v]) | |
# out = out.reshape(N, self.scaled_dim) | |
# out = self.fc_out(out) | |
# return out | |
# class BaseModel(nn.Module): | |
# def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'): | |
# super().__init__() | |
# self.device = device | |
# self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1) | |
# self.feature_dim = self.backbone.classifier[1].in_features | |
# self.backbone.classifier = nn.Identity() | |
# self.num_heads = max(1, min(8, self.feature_dim // 64)) | |
# self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads) | |
# self.classifier = nn.Sequential( | |
# nn.LayerNorm(self.feature_dim), | |
# nn.Dropout(0.3), | |
# nn.Linear(self.feature_dim, num_classes) | |
# ) | |
# self.to(device) | |
# def forward(self, x): | |
# x = x.to(self.device) | |
# features = self.backbone(x) | |
# attended_features = self.attention(features) | |
# logits = self.classifier(attended_features) | |
# return logits, attended_features | |
# # Initialize model | |
# num_classes = len(dog_breeds) | |
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# # Initialize base model | |
# model = BaseModel(num_classes=num_classes, device=device).to(device) | |
# # Load model path | |
# model_path = "124_best_model_dog.pth" | |
# checkpoint = torch.load(model_path, map_location=device) | |
# # Load model state | |
# model.load_state_dict(checkpoint["base_model"], strict=False) | |
# model.eval() | |
# # Image preprocessing function | |
# def preprocess_image(image): | |
# # If the image is numpy.ndarray turn into PIL.Image | |
# if isinstance(image, np.ndarray): | |
# image = Image.fromarray(image) | |
# # Use torchvision.transforms to process images | |
# transform = transforms.Compose([ | |
# transforms.Resize((224, 224)), | |
# transforms.ToTensor(), | |
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
# ]) | |
# return transform(image).unsqueeze(0) | |
# async def predict_single_dog(image): | |
# """ | |
# Predicts the dog breed using only the classifier. | |
# Args: | |
# image: PIL Image or numpy array | |
# Returns: | |
# tuple: (top1_prob, topk_breeds, relative_probs) | |
# """ | |
# image_tensor = preprocess_image(image).to(device) | |
# with torch.no_grad(): | |
# # Get model outputs (只使用logits,不需要features) | |
# logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素 | |
# probs = F.softmax(logits, dim=1) | |
# # Classifier prediction | |
# top5_prob, top5_idx = torch.topk(probs, k=5) | |
# breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]] | |
# probabilities = [prob.item() for prob in top5_prob[0]] | |
# # Calculate relative probabilities | |
# sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率 | |
# relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]] | |
# # Debug output | |
# print("\nClassifier Predictions:") | |
# for breed, prob in zip(breeds[:5], probabilities[:5]): | |
# print(f"{breed}: {prob:.4f}") | |
# return probabilities[0], breeds[:3], relative_probs | |
# async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55): | |
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0] | |
# dogs = [] | |
# boxes = [] | |
# for box in results.boxes: | |
# if box.cls == 16: # COCO dataset class for dog is 16 | |
# xyxy = box.xyxy[0].tolist() | |
# confidence = box.conf.item() | |
# boxes.append((xyxy, confidence)) | |
# if not boxes: | |
# dogs.append((image, 1.0, [0, 0, image.width, image.height])) | |
# else: | |
# nms_boxes = non_max_suppression(boxes, iou_threshold) | |
# for box, confidence in nms_boxes: | |
# x1, y1, x2, y2 = box | |
# w, h = x2 - x1, y2 - y1 | |
# x1 = max(0, x1 - w * 0.05) | |
# y1 = max(0, y1 - h * 0.05) | |
# x2 = min(image.width, x2 + w * 0.05) | |
# y2 = min(image.height, y2 + h * 0.05) | |
# cropped_image = image.crop((x1, y1, x2, y2)) | |
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2])) | |
# return dogs | |
# def non_max_suppression(boxes, iou_threshold): | |
# keep = [] | |
# boxes = sorted(boxes, key=lambda x: x[1], reverse=True) | |
# while boxes: | |
# current = boxes.pop(0) | |
# keep.append(current) | |
# boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold] | |
# return keep | |
# def calculate_iou(box1, box2): | |
# x1 = max(box1[0], box2[0]) | |
# y1 = max(box1[1], box2[1]) | |
# x2 = min(box1[2], box2[2]) | |
# y2 = min(box1[3], box2[3]) | |
# intersection = max(0, x2 - x1) * max(0, y2 - y1) | |
# area1 = (box1[2] - box1[0]) * (box1[3] - box1[1]) | |
# area2 = (box2[2] - box2[0]) * (box2[3] - box2[1]) | |
# iou = intersection / float(area1 + area2 - intersection) | |
# return iou | |
# def create_breed_comparison(breed1: str, breed2: str) -> dict: | |
# breed1_info = get_dog_description(breed1) | |
# breed2_info = get_dog_description(breed2) | |
# # 標準化數值轉換 | |
# value_mapping = { | |
# 'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4}, | |
# 'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4}, | |
# 'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3}, | |
# 'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3} | |
# } | |
# comparison_data = { | |
# breed1: {}, | |
# breed2: {} | |
# } | |
# for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]: | |
# comparison_data[breed] = { | |
# 'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium | |
# 'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate | |
# 'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2), | |
# 'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2), | |
# 'Good_with_Children': info['Good with Children'] == 'Yes', | |
# 'Original_Data': info | |
# } | |
# return comparison_data | |
# async def predict(image): | |
# """ | |
# Main prediction function that handles both single and multiple dog detection. | |
# Args: | |
# image: PIL Image or numpy array | |
# Returns: | |
# tuple: (html_output, annotated_image, initial_state) | |
# """ | |
# if image is None: | |
# return format_warning_html("Please upload an image to start."), None, None | |
# try: | |
# if isinstance(image, np.ndarray): | |
# image = Image.fromarray(image) | |
# # Detect dogs in the image | |
# dogs = await detect_multiple_dogs(image) | |
# color_scheme = get_color_scheme(len(dogs) == 1) | |
# # Prepare for annotation | |
# annotated_image = image.copy() | |
# draw = ImageDraw.Draw(annotated_image) | |
# try: | |
# font = ImageFont.truetype("arial.ttf", 24) | |
# except: | |
# font = ImageFont.load_default() | |
# dogs_info = "" | |
# # Process each detected dog | |
# for i, (cropped_image, detection_confidence, box) in enumerate(dogs): | |
# color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)] | |
# # Draw box and label on image | |
# draw.rectangle(box, outline=color, width=4) | |
# label = f"Dog {i+1}" | |
# label_bbox = draw.textbbox((0, 0), label, font=font) | |
# label_width = label_bbox[2] - label_bbox[0] | |
# label_height = label_bbox[3] - label_bbox[1] | |
# # Draw label background and text | |
# label_x = box[0] + 5 | |
# label_y = box[1] + 5 | |
# draw.rectangle( | |
# [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4], | |
# fill='white', | |
# outline=color, | |
# width=2 | |
# ) | |
# draw.text((label_x, label_y), label, fill=color, font=font) | |
# # Predict breed | |
# top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image) | |
# combined_confidence = detection_confidence * top1_prob | |
# # Format results based on confidence with error handling | |
# try: | |
# if combined_confidence < 0.2: | |
# dogs_info += format_error_message(color, i+1) | |
# elif top1_prob >= 0.45: | |
# breed = topk_breeds[0] | |
# description = get_dog_description(breed) | |
# # Handle missing breed description | |
# if description is None: | |
# # 如果沒有描述,創建一個基本描述 | |
# description = { | |
# "Name": breed, | |
# "Size": "Unknown", | |
# "Exercise Needs": "Unknown", | |
# "Grooming Needs": "Unknown", | |
# "Care Level": "Unknown", | |
# "Good with Children": "Unknown", | |
# "Description": f"Identified as {breed.replace('_', ' ')}" | |
# } | |
# dogs_info += format_single_dog_result(breed, description, color) | |
# else: | |
# # 修改format_multiple_breeds_result的調用,包含錯誤處理 | |
# dogs_info += format_multiple_breeds_result( | |
# topk_breeds, | |
# relative_probs, | |
# color, | |
# i+1, | |
# lambda breed: get_dog_description(breed) or { | |
# "Name": breed, | |
# "Size": "Unknown", | |
# "Exercise Needs": "Unknown", | |
# "Grooming Needs": "Unknown", | |
# "Care Level": "Unknown", | |
# "Good with Children": "Unknown", | |
# "Description": f"Identified as {breed.replace('_', ' ')}" | |
# } | |
# ) | |
# except Exception as e: | |
# print(f"Error formatting results for dog {i+1}: {str(e)}") | |
# dogs_info += format_error_message(color, i+1) | |
# # Wrap final HTML output | |
# html_output = format_multi_dog_container(dogs_info) | |
# # Prepare initial state | |
# initial_state = { | |
# "dogs_info": dogs_info, | |
# "image": annotated_image, | |
# "is_multi_dog": len(dogs) > 1, | |
# "html_output": html_output | |
# } | |
# return html_output, annotated_image, initial_state | |
# except Exception as e: | |
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
# print(error_msg) | |
# return format_warning_html(error_msg), None, None | |
# def show_details_html(choice, previous_output, initial_state): | |
# """ | |
# Generate detailed HTML view for a selected breed. | |
# Args: | |
# choice: str, Selected breed option | |
# previous_output: str, Previous HTML output | |
# initial_state: dict, Current state information | |
# Returns: | |
# tuple: (html_output, gradio_update, updated_state) | |
# """ | |
# if not choice: | |
# return previous_output, gr.update(visible=True), initial_state | |
# try: | |
# breed = choice.split("More about ")[-1] | |
# description = get_dog_description(breed) | |
# html_output = format_breed_details_html(description, breed) | |
# # Update state | |
# initial_state["current_description"] = html_output | |
# initial_state["original_buttons"] = initial_state.get("buttons", []) | |
# return html_output, gr.update(visible=True), initial_state | |
# except Exception as e: | |
# error_msg = f"An error occurred while showing details: {e}" | |
# print(error_msg) | |
# return format_warning_html(error_msg), gr.update(visible=True), initial_state | |
# def main(): | |
# with gr.Blocks(css=get_css_styles()) as iface: | |
# # Header HTML | |
# gr.HTML(""" | |
# <header style='text-align: center; padding: 20px; margin-bottom: 20px;'> | |
# <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'> | |
# 🐾 PawMatch AI | |
# </h1> | |
# <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'> | |
# Your Smart Dog Breed Guide | |
# </h2> | |
# <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div> | |
# <p style='color: #718096; font-size: 0.9em;'> | |
# Powered by AI • Breed Recognition • Smart Matching • Companion Guide | |
# </p> | |
# </header> | |
# """) | |
# # 先創建歷史組件實例(但不創建標籤頁) | |
# history_component = create_history_component() | |
# with gr.Tabs(): | |
# # 1. 品種檢測標籤頁 | |
# example_images = [ | |
# 'Border_Collie.jpg', | |
# 'Golden_Retriever.jpeg', | |
# 'Saint_Bernard.jpeg', | |
# 'Samoyed.jpg', | |
# 'French_Bulldog.jpeg' | |
# ] | |
# detection_components = create_detection_tab(predict, example_images) | |
# # 2. 品種比較標籤頁 | |
# comparison_components = create_comparison_tab( | |
# dog_breeds=dog_breeds, | |
# get_dog_description=get_dog_description, | |
# breed_health_info=breed_health_info, | |
# breed_noise_info=breed_noise_info | |
# ) | |
# # 3. 品種推薦標籤頁 | |
# recommendation_components = create_recommendation_tab( | |
# UserPreferences=UserPreferences, | |
# get_breed_recommendations=get_breed_recommendations, | |
# format_recommendation_html=format_recommendation_html, | |
# history_component=history_component | |
# ) | |
# # 4. 最後創建歷史記錄標籤頁 | |
# create_history_tab(history_component) | |
# # Footer | |
# gr.HTML(''' | |
# <div style=" | |
# display: flex; | |
# align-items: center; | |
# justify-content: center; | |
# gap: 20px; | |
# padding: 20px 0; | |
# "> | |
# <p style=" | |
# font-family: 'Arial', sans-serif; | |
# font-size: 14px; | |
# font-weight: 500; | |
# letter-spacing: 2px; | |
# background: linear-gradient(90deg, #555, #007ACC); | |
# -webkit-background-clip: text; | |
# -webkit-text-fill-color: transparent; | |
# margin: 0; | |
# text-transform: uppercase; | |
# display: inline-block; | |
# ">EXPLORE THE CODE →</p> | |
# <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;"> | |
# <img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge"> | |
# </a> | |
# </div> | |
# ''') | |
# return iface | |
# if __name__ == "__main__": | |
# iface = main() | |
# iface.launch() | |
import os | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import gradio as gr | |
import time | |
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights | |
from torchvision.ops import nms, box_iou | |
import torch.nn.functional as F | |
from torchvision import transforms | |
from PIL import Image, ImageDraw, ImageFont, ImageFilter | |
from breed_health_info import breed_health_info | |
from breed_noise_info import breed_noise_info | |
from dog_database import get_dog_description | |
from scoring_calculation_system import UserPreferences | |
from recommendation_html_format import format_recommendation_html, get_breed_recommendations | |
from history_manager import UserHistoryManager | |
from search_history import create_history_tab, create_history_component | |
from styles import get_css_styles | |
from breed_detection import create_detection_tab | |
from breed_comparison import create_comparison_tab | |
from breed_recommendation import create_recommendation_tab | |
from html_templates import ( | |
format_description_html, | |
format_single_dog_result, | |
format_multiple_breeds_result, | |
format_error_message, | |
format_warning_html, | |
format_multi_dog_container, | |
format_breed_details_html, | |
get_color_scheme, | |
get_akc_breeds_link | |
) | |
from urllib.parse import quote | |
from ultralytics import YOLO | |
import asyncio | |
import traceback | |
def get_device(): | |
if torch.cuda.is_available(): | |
device = torch.device('cuda') | |
print(f"Using GPU: {torch.cuda.get_device_name(0)}") | |
print(f"GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB") | |
return device | |
else: | |
print("Using CPU") | |
return torch.device('cpu') | |
device = get_device() | |
history_manager = UserHistoryManager() | |
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier", | |
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise", | |
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres", | |
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever", | |
"Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter", | |
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd", | |
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees", | |
"Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier", | |
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel", | |
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa", | |
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound", | |
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian", | |
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed", | |
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu", | |
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel", | |
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner", | |
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier", | |
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound", | |
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber", | |
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo", | |
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond", | |
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher", | |
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone", | |
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle", | |
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet", | |
"Wire-Haired_Fox_Terrier"] | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, in_dim, num_heads=8): | |
super().__init__() | |
self.num_heads = num_heads | |
self.head_dim = max(1, in_dim // num_heads) | |
self.scaled_dim = self.head_dim * num_heads | |
self.fc_in = nn.Linear(in_dim, self.scaled_dim) | |
self.query = nn.Linear(self.scaled_dim, self.scaled_dim) | |
self.key = nn.Linear(self.scaled_dim, self.scaled_dim) | |
self.value = nn.Linear(self.scaled_dim, self.scaled_dim) | |
self.fc_out = nn.Linear(self.scaled_dim, in_dim) | |
def forward(self, x): | |
N = x.shape[0] | |
x = self.fc_in(x) | |
q = self.query(x).view(N, self.num_heads, self.head_dim) | |
k = self.key(x).view(N, self.num_heads, self.head_dim) | |
v = self.value(x).view(N, self.num_heads, self.head_dim) | |
energy = torch.einsum("nqd,nkd->nqk", [q, k]) | |
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2) | |
out = torch.einsum("nqk,nvd->nqd", [attention, v]) | |
out = out.reshape(N, self.scaled_dim) | |
out = self.fc_out(out) | |
return out | |
class BaseModel(nn.Module): | |
def __init__(self, num_classes, device=None): | |
super().__init__() | |
if device is None: | |
device = get_device() | |
self.device = device | |
print(f"Initializing model on device: {device}") | |
self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1) | |
self.feature_dim = self.backbone.classifier[1].in_features | |
self.backbone.classifier = nn.Identity() | |
self.num_heads = max(1, min(8, self.feature_dim // 64)) | |
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads) | |
self.classifier = nn.Sequential( | |
nn.LayerNorm(self.feature_dim), | |
nn.Dropout(0.3), | |
nn.Linear(self.feature_dim, num_classes) | |
) | |
self.to(device) | |
def forward(self, x): | |
x = x.to(self.device) | |
features = self.backbone(x) | |
attended_features = self.attention(features) | |
logits = self.classifier(attended_features) | |
return logits, attended_features | |
# Initialize model | |
num_classes = len(dog_breeds) | |
# Initialize base model | |
model = BaseModel(num_classes=num_classes, device=device) | |
# Load model path | |
model_path = "124_best_model_dog.pth" | |
checkpoint = torch.load(model_path, map_location=device) | |
# Load model state | |
model.load_state_dict(checkpoint['base_model'], strict=False) | |
model.eval() | |
# Image preprocessing function | |
def preprocess_image(image): | |
# If the image is numpy.ndarray turn into PIL.Image | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
# Use torchvision.transforms to process images | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
return transform(image).unsqueeze(0) | |
model_yolo = YOLO('yolov8l.pt') | |
if torch.cuda.is_available(): | |
model_yolo.to(device) | |
async def predict_single_dog(image): | |
""" | |
Predicts the dog breed using only the classifier. | |
Args: | |
image: PIL Image or numpy array | |
Returns: | |
tuple: (top1_prob, topk_breeds, relative_probs) | |
""" | |
image_tensor = preprocess_image(image).to(device) | |
with torch.no_grad(): | |
# Get model outputs (只使用logits,不需要features) | |
logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素 | |
probs = F.softmax(logits, dim=1) | |
# Classifier prediction | |
top5_prob, top5_idx = torch.topk(probs, k=5) | |
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]] | |
probabilities = [prob.item() for prob in top5_prob[0]] | |
# Calculate relative probabilities | |
sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率 | |
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]] | |
# Debug output | |
print("\nClassifier Predictions:") | |
for breed, prob in zip(breeds[:5], probabilities[:5]): | |
print(f"{breed}: {prob:.4f}") | |
return probabilities[0], breeds[:3], relative_probs | |
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55): | |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0] | |
dogs = [] | |
boxes = [] | |
for box in results.boxes: | |
if box.cls == 16: # COCO dataset class for dog is 16 | |
xyxy = box.xyxy[0].tolist() | |
confidence = box.conf.item() | |
boxes.append((xyxy, confidence)) | |
if not boxes: | |
dogs.append((image, 1.0, [0, 0, image.width, image.height])) | |
else: | |
nms_boxes = non_max_suppression(boxes, iou_threshold) | |
for box, confidence in nms_boxes: | |
x1, y1, x2, y2 = box | |
w, h = x2 - x1, y2 - y1 | |
x1 = max(0, x1 - w * 0.05) | |
y1 = max(0, y1 - h * 0.05) | |
x2 = min(image.width, x2 + w * 0.05) | |
y2 = min(image.height, y2 + h * 0.05) | |
cropped_image = image.crop((x1, y1, x2, y2)) | |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2])) | |
return dogs | |
def non_max_suppression(boxes, iou_threshold): | |
keep = [] | |
boxes = sorted(boxes, key=lambda x: x[1], reverse=True) | |
while boxes: | |
current = boxes.pop(0) | |
keep.append(current) | |
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold] | |
return keep | |
def calculate_iou(box1, box2): | |
x1 = max(box1[0], box2[0]) | |
y1 = max(box1[1], box2[1]) | |
x2 = min(box1[2], box2[2]) | |
y2 = min(box1[3], box2[3]) | |
intersection = max(0, x2 - x1) * max(0, y2 - y1) | |
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1]) | |
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1]) | |
iou = intersection / float(area1 + area2 - intersection) | |
return iou | |
def create_breed_comparison(breed1: str, breed2: str) -> dict: | |
breed1_info = get_dog_description(breed1) | |
breed2_info = get_dog_description(breed2) | |
# 標準化數值轉換 | |
value_mapping = { | |
'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4}, | |
'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4}, | |
'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3}, | |
'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3} | |
} | |
comparison_data = { | |
breed1: {}, | |
breed2: {} | |
} | |
for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]: | |
comparison_data[breed] = { | |
'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium | |
'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate | |
'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2), | |
'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2), | |
'Good_with_Children': info['Good with Children'] == 'Yes', | |
'Original_Data': info | |
} | |
return comparison_data | |
async def predict(image): | |
""" | |
Main prediction function that handles both single and multiple dog detection. | |
Args: | |
image: PIL Image or numpy array | |
Returns: | |
tuple: (html_output, annotated_image, initial_state) | |
""" | |
if image is None: | |
return format_warning_html("Please upload an image to start."), None, None | |
try: | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
# Detect dogs in the image | |
dogs = await detect_multiple_dogs(image) | |
color_scheme = get_color_scheme(len(dogs) == 1) | |
# Prepare for annotation | |
annotated_image = image.copy() | |
draw = ImageDraw.Draw(annotated_image) | |
try: | |
font = ImageFont.truetype("arial.ttf", 24) | |
except: | |
font = ImageFont.load_default() | |
dogs_info = "" | |
# Process each detected dog | |
for i, (cropped_image, detection_confidence, box) in enumerate(dogs): | |
color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)] | |
# Draw box and label on image | |
draw.rectangle(box, outline=color, width=4) | |
label = f"Dog {i+1}" | |
label_bbox = draw.textbbox((0, 0), label, font=font) | |
label_width = label_bbox[2] - label_bbox[0] | |
label_height = label_bbox[3] - label_bbox[1] | |
# Draw label background and text | |
label_x = box[0] + 5 | |
label_y = box[1] + 5 | |
draw.rectangle( | |
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4], | |
fill='white', | |
outline=color, | |
width=2 | |
) | |
draw.text((label_x, label_y), label, fill=color, font=font) | |
# Predict breed | |
top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image) | |
combined_confidence = detection_confidence * top1_prob | |
# Format results based on confidence with error handling | |
try: | |
if combined_confidence < 0.2: | |
dogs_info += format_error_message(color, i+1) | |
elif top1_prob >= 0.45: | |
breed = topk_breeds[0] | |
description = get_dog_description(breed) | |
# Handle missing breed description | |
if description is None: | |
# 如果沒有描述,創建一個基本描述 | |
description = { | |
"Name": breed, | |
"Size": "Unknown", | |
"Exercise Needs": "Unknown", | |
"Grooming Needs": "Unknown", | |
"Care Level": "Unknown", | |
"Good with Children": "Unknown", | |
"Description": f"Identified as {breed.replace('_', ' ')}" | |
} | |
dogs_info += format_single_dog_result(breed, description, color) | |
else: | |
# 修改format_multiple_breeds_result的調用,包含錯誤處理 | |
dogs_info += format_multiple_breeds_result( | |
topk_breeds, | |
relative_probs, | |
color, | |
i+1, | |
lambda breed: get_dog_description(breed) or { | |
"Name": breed, | |
"Size": "Unknown", | |
"Exercise Needs": "Unknown", | |
"Grooming Needs": "Unknown", | |
"Care Level": "Unknown", | |
"Good with Children": "Unknown", | |
"Description": f"Identified as {breed.replace('_', ' ')}" | |
} | |
) | |
except Exception as e: | |
print(f"Error formatting results for dog {i+1}: {str(e)}") | |
dogs_info += format_error_message(color, i+1) | |
# Wrap final HTML output | |
html_output = format_multi_dog_container(dogs_info) | |
# Prepare initial state | |
initial_state = { | |
"dogs_info": dogs_info, | |
"image": annotated_image, | |
"is_multi_dog": len(dogs) > 1, | |
"html_output": html_output | |
} | |
return html_output, annotated_image, initial_state | |
except Exception as e: | |
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
print(error_msg) | |
return format_warning_html(error_msg), None, None | |
def show_details_html(choice, previous_output, initial_state): | |
""" | |
Generate detailed HTML view for a selected breed. | |
Args: | |
choice: str, Selected breed option | |
previous_output: str, Previous HTML output | |
initial_state: dict, Current state information | |
Returns: | |
tuple: (html_output, gradio_update, updated_state) | |
""" | |
if not choice: | |
return previous_output, gr.update(visible=True), initial_state | |
try: | |
breed = choice.split("More about ")[-1] | |
description = get_dog_description(breed) | |
html_output = format_breed_details_html(description, breed) | |
# Update state | |
initial_state["current_description"] = html_output | |
initial_state["original_buttons"] = initial_state.get("buttons", []) | |
return html_output, gr.update(visible=True), initial_state | |
except Exception as e: | |
error_msg = f"An error occurred while showing details: {e}" | |
print(error_msg) | |
return format_warning_html(error_msg), gr.update(visible=True), initial_state | |
def main(): | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
with gr.Blocks(css=get_css_styles()) as iface: | |
# Header HTML | |
gr.HTML(""" | |
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'> | |
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'> | |
🐾 PawMatch AI | |
</h1> | |
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'> | |
Your Smart Dog Breed Guide | |
</h2> | |
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div> | |
<p style='color: #718096; font-size: 0.9em;'> | |
Powered by AI • Breed Recognition • Smart Matching • Companion Guide | |
</p> | |
</header> | |
""") | |
# 先創建歷史組件實例(但不創建標籤頁) | |
history_component = create_history_component() | |
with gr.Tabs(): | |
# 1. 品種檢測標籤頁 | |
example_images = [ | |
'Border_Collie.jpg', | |
'Golden_Retriever.jpeg', | |
'Saint_Bernard.jpeg', | |
'Samoyed.jpg', | |
'French_Bulldog.jpeg' | |
] | |
detection_components = create_detection_tab(predict, example_images) | |
# 2. 品種比較標籤頁 | |
comparison_components = create_comparison_tab( | |
dog_breeds=dog_breeds, | |
get_dog_description=get_dog_description, | |
breed_health_info=breed_health_info, | |
breed_noise_info=breed_noise_info | |
) | |
# 3. 品種推薦標籤頁 | |
recommendation_components = create_recommendation_tab( | |
UserPreferences=UserPreferences, | |
get_breed_recommendations=get_breed_recommendations, | |
format_recommendation_html=format_recommendation_html, | |
history_component=history_component | |
) | |
# 4. 最後創建歷史記錄標籤頁 | |
create_history_tab(history_component) | |
# Footer | |
gr.HTML(''' | |
<div style=" | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
gap: 20px; | |
padding: 20px 0; | |
"> | |
<p style=" | |
font-family: 'Arial', sans-serif; | |
font-size: 14px; | |
font-weight: 500; | |
letter-spacing: 2px; | |
background: linear-gradient(90deg, #555, #007ACC); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
margin: 0; | |
text-transform: uppercase; | |
display: inline-block; | |
">EXPLORE THE CODE →</p> | |
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;"> | |
<img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge"> | |
</a> | |
</div> | |
''') | |
return iface | |
if __name__ == "__main__": | |
print(f"CUDA available: {torch.cuda.is_available()}") | |
if torch.cuda.is_available(): | |
print(f"Current device: {torch.cuda.current_device()}") | |
print(f"Device name: {torch.cuda.get_device_name()}") | |
iface = main() | |
iface.launch(share=True, debug=True) |