Spaces:
Sleeping
Sleeping
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +215 -360
scoring_calculation_system.py
CHANGED
@@ -409,7 +409,7 @@ def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences'
|
|
409 |
|
410 |
|
411 |
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
|
412 |
-
"""
|
413 |
try:
|
414 |
print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
|
415 |
print(f"Breed info keys: {breed_info.keys()}")
|
@@ -417,192 +417,10 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
417 |
if 'Size' not in breed_info:
|
418 |
print("Missing Size information")
|
419 |
raise KeyError("Size information missing")
|
420 |
-
|
421 |
-
|
422 |
-
# def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
423 |
-
# """
|
424 |
-
# 主要改進:
|
425 |
-
# 1. 更均衡的基礎分數分配
|
426 |
-
# 2. 更細緻的空間需求評估
|
427 |
-
# 3. 強化運動需求與空間的關聯性
|
428 |
-
# """
|
429 |
-
# # 重新設計基礎分數矩陣,降低普遍分數以增加區別度
|
430 |
-
# base_scores = {
|
431 |
-
# "Small": {
|
432 |
-
# "apartment": 0.90, # 降低滿分機會
|
433 |
-
# "house_small": 0.85, # 小型犬不應在大空間得到太高分數
|
434 |
-
# "house_large": 0.80 # 避免小型犬總是得到最高分
|
435 |
-
# },
|
436 |
-
# "Medium": {
|
437 |
-
# "apartment": 0.40, # 維持對公寓環境的限制
|
438 |
-
# "house_small": 0.80, # 適中的分數
|
439 |
-
# "house_large": 0.90 # 給予合理的獎勵
|
440 |
-
# },
|
441 |
-
# "Large": {
|
442 |
-
# "apartment": 0.10, # 加重對大型犬在公寓的限制
|
443 |
-
# "house_small": 0.60, # 中等適合度
|
444 |
-
# "house_large": 0.95 # 最適合的環境
|
445 |
-
# },
|
446 |
-
# "Giant": {
|
447 |
-
# "apartment": 0.10, # 更嚴格的限制
|
448 |
-
# "house_small": 0.45, # 顯著的空間限制
|
449 |
-
# "house_large": 0.95 # 最理想的配對
|
450 |
-
# }
|
451 |
-
# }
|
452 |
-
|
453 |
-
# # 取得基礎分數
|
454 |
-
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
455 |
-
|
456 |
-
# # 運動需求相關的調整更加動態
|
457 |
-
# exercise_adjustments = {
|
458 |
-
# "Very High": {
|
459 |
-
# "apartment": -0.25, # 加重在受限空間的懲罰
|
460 |
-
# "house_small": -0.15,
|
461 |
-
# "house_large": -0.05
|
462 |
-
# },
|
463 |
-
# "High": {
|
464 |
-
# "apartment": -0.20,
|
465 |
-
# "house_small": -0.10,
|
466 |
-
# "house_large": 0
|
467 |
-
# },
|
468 |
-
# "Moderate": {
|
469 |
-
# "apartment": -0.10,
|
470 |
-
# "house_small": -0.05,
|
471 |
-
# "house_large": 0
|
472 |
-
# },
|
473 |
-
# "Low": {
|
474 |
-
# "apartment": 0.05, # 低運動需求在小空間反而有優勢
|
475 |
-
# "house_small": 0,
|
476 |
-
# "house_large": -0.05 # 輕微降低評分,因為空間可能過大
|
477 |
-
# }
|
478 |
-
# }
|
479 |
-
|
480 |
-
# # 根據空間類型獲取運動需求調整
|
481 |
-
# adjustment = exercise_adjustments.get(exercise_needs,
|
482 |
-
# exercise_adjustments["Moderate"])[living_space]
|
483 |
-
|
484 |
-
# # 院子效益根據品種大小和運動需求動態調整
|
485 |
-
# if has_yard:
|
486 |
-
# yard_bonus = {
|
487 |
-
# "Giant": 0.20,
|
488 |
-
# "Large": 0.15,
|
489 |
-
# "Medium": 0.10,
|
490 |
-
# "Small": 0.05
|
491 |
-
# }.get(size, 0.10)
|
492 |
-
|
493 |
-
# # 運動需求會影響院子的重要性
|
494 |
-
# if exercise_needs in ["Very High", "High"]:
|
495 |
-
# yard_bonus *= 1.2
|
496 |
-
# elif exercise_needs == "Low":
|
497 |
-
# yard_bonus *= 0.8
|
498 |
-
|
499 |
-
# current_score = base_score + adjustment + yard_bonus
|
500 |
-
# else:
|
501 |
-
# current_score = base_score + adjustment
|
502 |
-
|
503 |
-
# # 確保分數在合理範圍內,但避免極端值
|
504 |
-
# return min(0.95, max(0.15, current_score))
|
505 |
-
|
506 |
-
|
507 |
-
# def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
|
508 |
-
# """
|
509 |
-
# 精確評估品種運動需求與使用者運動條件的匹配度
|
510 |
-
|
511 |
-
# Parameters:
|
512 |
-
# breed_needs: 品種的運動需求等級
|
513 |
-
# exercise_time: 使用者能提供的運動時間(分鐘)
|
514 |
-
# exercise_type: 使用者偏好的運動類型
|
515 |
-
|
516 |
-
# Returns:
|
517 |
-
# float: -0.2 到 0.2 之間的��配分數
|
518 |
-
# """
|
519 |
-
# # 定義更細緻的運動需求等級
|
520 |
-
# exercise_levels = {
|
521 |
-
# 'VERY HIGH': {
|
522 |
-
# 'min': 120,
|
523 |
-
# 'ideal': 150,
|
524 |
-
# 'max': 180,
|
525 |
-
# 'intensity': 'high',
|
526 |
-
# 'sessions': 'multiple',
|
527 |
-
# 'preferred_types': ['active_training', 'intensive_exercise']
|
528 |
-
# },
|
529 |
-
# 'HIGH': {
|
530 |
-
# 'min': 90,
|
531 |
-
# 'ideal': 120,
|
532 |
-
# 'max': 150,
|
533 |
-
# 'intensity': 'moderate_high',
|
534 |
-
# 'sessions': 'multiple',
|
535 |
-
# 'preferred_types': ['active_training', 'moderate_activity']
|
536 |
-
# },
|
537 |
-
# 'MODERATE HIGH': {
|
538 |
-
# 'min': 70,
|
539 |
-
# 'ideal': 90,
|
540 |
-
# 'max': 120,
|
541 |
-
# 'intensity': 'moderate',
|
542 |
-
# 'sessions': 'flexible',
|
543 |
-
# 'preferred_types': ['moderate_activity', 'active_training']
|
544 |
-
# },
|
545 |
-
# 'MODERATE': {
|
546 |
-
# 'min': 45,
|
547 |
-
# 'ideal': 60,
|
548 |
-
# 'max': 90,
|
549 |
-
# 'intensity': 'moderate',
|
550 |
-
# 'sessions': 'flexible',
|
551 |
-
# 'preferred_types': ['moderate_activity', 'light_walks']
|
552 |
-
# },
|
553 |
-
# 'MODERATE LOW': {
|
554 |
-
# 'min': 30,
|
555 |
-
# 'ideal': 45,
|
556 |
-
# 'max': 70,
|
557 |
-
# 'intensity': 'light_moderate',
|
558 |
-
# 'sessions': 'flexible',
|
559 |
-
# 'preferred_types': ['light_walks', 'moderate_activity']
|
560 |
-
# },
|
561 |
-
# 'LOW': {
|
562 |
-
# 'min': 15,
|
563 |
-
# 'ideal': 30,
|
564 |
-
# 'max': 45,
|
565 |
-
# 'intensity': 'light',
|
566 |
-
# 'sessions': 'single',
|
567 |
-
# 'preferred_types': ['light_walks']
|
568 |
-
# }
|
569 |
-
# }
|
570 |
-
|
571 |
-
# # 獲取品種的運動需求配置
|
572 |
-
# breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
573 |
-
|
574 |
-
# # 計算時間匹配度(使用更平滑的評分曲線)
|
575 |
-
# if exercise_time >= breed_level['ideal']:
|
576 |
-
# if exercise_time > breed_level['max']:
|
577 |
-
# # 運動時間過長,適度降分
|
578 |
-
# time_score = 0.15 - (0.08 * (exercise_time - breed_level['max']) / 30)
|
579 |
-
# else:
|
580 |
-
# time_score = 0.15
|
581 |
-
# elif exercise_time >= breed_level['min']:
|
582 |
-
# # 在最小需求和理想需求之間,線性計算分數
|
583 |
-
# time_ratio = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
|
584 |
-
# time_score = 0.05 + (time_ratio * 0.10)
|
585 |
-
# else:
|
586 |
-
# # 運動時間不足,根據差距程度扣分
|
587 |
-
# time_ratio = max(0, exercise_time / breed_level['min'])
|
588 |
-
# time_score = -0.20 * (1 - time_ratio)
|
589 |
-
|
590 |
-
# # 運動類型匹配度評估
|
591 |
-
# type_score = 0.0
|
592 |
-
# if exercise_type in breed_level['preferred_types']:
|
593 |
-
# type_score = 0.05
|
594 |
-
# if exercise_type == breed_level['preferred_types'][0]:
|
595 |
-
# type_score = 0.08 # 最佳匹配類型給予更高分數
|
596 |
-
|
597 |
-
# return max(-0.2, min(0.2, time_score + type_score))
|
598 |
-
|
599 |
|
600 |
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
601 |
"""
|
602 |
-
|
603 |
-
|
604 |
-
改進重點:
|
605 |
-
1. 更動態的基礎分數矩陣
|
606 |
2. 強化空間品質評估
|
607 |
3. 增加極端情況處理
|
608 |
4. 考慮不同空間組合的協同效應
|
@@ -1479,210 +1297,212 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1479 |
|
1480 |
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1481 |
# """
|
1482 |
-
#
|
1483 |
-
|
1484 |
-
# 主要改進:
|
1485 |
-
# 1. 更動態的權重系統
|
1486 |
-
# 2. 更強的極端情況處理
|
1487 |
-
# 3. 更精確的品種特性評估
|
1488 |
# """
|
1489 |
-
# def
|
1490 |
-
# """
|
1491 |
-
#
|
|
|
|
|
|
|
|
|
|
|
1492 |
|
1493 |
-
# #
|
1494 |
-
# if user_prefs.living_space == 'apartment'
|
1495 |
-
#
|
1496 |
-
# elif user_prefs.living_space == 'house_large'
|
1497 |
-
#
|
1498 |
|
1499 |
-
# #
|
1500 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1501 |
-
# if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time
|
1502 |
-
#
|
1503 |
-
# elif exercise_needs == 'LOW' and user_prefs.exercise_time
|
1504 |
-
#
|
|
|
|
|
1505 |
|
1506 |
-
# #
|
1507 |
# care_level = breed_info.get('Care Level', 'MODERATE')
|
1508 |
-
# if care_level == 'High' and user_prefs.experience_level == '
|
1509 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1510 |
|
1511 |
-
# return
|
1512 |
|
1513 |
-
# def
|
1514 |
# """計算動態權重"""
|
1515 |
-
#
|
1516 |
-
# weights = {
|
1517 |
# 'space': 0.20,
|
1518 |
# 'exercise': 0.20,
|
1519 |
-
# 'experience': 0.
|
1520 |
# 'grooming': 0.15,
|
1521 |
# 'health': 0.15,
|
1522 |
-
# 'noise': 0.
|
1523 |
# }
|
1524 |
|
1525 |
-
# #
|
1526 |
-
#
|
1527 |
-
# weights['space'] *= 2.0
|
1528 |
-
# weights['noise'] *= 1.8
|
1529 |
-
|
1530 |
-
# # 根據家庭情況調整
|
1531 |
-
# if user_prefs.has_children:
|
1532 |
-
# if user_prefs.children_age == 'toddler':
|
1533 |
-
# weights['noise'] *= 2.0
|
1534 |
-
# weights['experience'] *= 1.8
|
1535 |
-
# weights['health'] *= 1.5
|
1536 |
-
# elif user_prefs.children_age == 'school_age':
|
1537 |
-
# weights['noise'] *= 1.5
|
1538 |
-
# weights['experience'] *= 1.3
|
1539 |
|
1540 |
-
# #
|
1541 |
-
# if user_prefs.
|
1542 |
-
#
|
1543 |
-
# elif user_prefs.
|
1544 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1545 |
|
1546 |
-
# #
|
1547 |
-
#
|
1548 |
-
#
|
1549 |
|
1550 |
-
# return
|
1551 |
|
1552 |
-
# #
|
1553 |
-
#
|
1554 |
|
1555 |
# # 計算動態權重
|
1556 |
-
# weights =
|
1557 |
|
1558 |
# # 正規化權重
|
1559 |
# total_weight = sum(weights.values())
|
1560 |
# normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
1561 |
|
1562 |
-
# #
|
1563 |
-
#
|
1564 |
-
# k: scores[k] * normalized_weights[k] for k in scores.keys()
|
1565 |
-
# }
|
1566 |
-
|
1567 |
-
# # 基礎分數
|
1568 |
-
# base_score = sum(weighted_scores.values())
|
1569 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1570 |
# # 品種特性加成
|
1571 |
-
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1572 |
-
|
1573 |
-
# # 根據極端程度調整最終分數
|
1574 |
-
# if extremity_level >= 3:
|
1575 |
-
# base_score *= 0.6 # 多個極端條件的嚴重懲罰
|
1576 |
-
# elif extremity_level >= 2:
|
1577 |
-
# base_score *= 0.8 # 較少極端條件的適度懲罰
|
1578 |
|
1579 |
-
# #
|
1580 |
-
#
|
1581 |
-
# base_score *= 1.3
|
1582 |
|
1583 |
-
#
|
1584 |
-
# bonus_weight = min(0.35, max(0.15, breed_bonus))
|
1585 |
-
|
1586 |
-
# # 最終分數計算
|
1587 |
-
# final_score = (base_score * (1.0 - bonus_weight)) + (breed_bonus * bonus_weight)
|
1588 |
-
|
1589 |
-
# return min(1.0, max(0.0, final_score))
|
1590 |
-
|
1591 |
-
|
1592 |
-
# def amplify_score_extreme(score: float) -> float:
|
1593 |
-
# """
|
1594 |
-
# 改進的分數轉換函數,提供更合理的分數分布
|
1595 |
-
|
1596 |
-
# 特點:
|
1597 |
-
# 1. 更大的分數範圍
|
1598 |
-
# 2. 更平滑的轉換曲線
|
1599 |
-
# 3. 更準確的極端情況處理
|
1600 |
-
# """
|
1601 |
-
# def sigmoid_transform(x: float, steepness: float = 10) -> float:
|
1602 |
-
# """使用 sigmoid 函數實現更平滑的轉換"""
|
1603 |
-
# import math
|
1604 |
-
# return 1 / (1 + math.exp(-steepness * (x - 0.5)))
|
1605 |
-
|
1606 |
-
# if score < 0.2:
|
1607 |
-
# # 極差匹配:使用更低的起始分數
|
1608 |
-
# base = 0.40
|
1609 |
-
# range_score = 0.15
|
1610 |
-
# position = score / 0.2
|
1611 |
-
# return base + (sigmoid_transform(position) * range_score)
|
1612 |
-
|
1613 |
-
# elif score < 0.4:
|
1614 |
-
# # 較差匹配:緩慢增長
|
1615 |
-
# base = 0.55
|
1616 |
-
# range_score = 0.15
|
1617 |
-
# position = (score - 0.2) / 0.2
|
1618 |
-
# return base + (sigmoid_transform(position) * range_score)
|
1619 |
-
|
1620 |
-
# elif score < 0.6:
|
1621 |
-
# # 中等匹配:較大增長
|
1622 |
-
# base = 0.70
|
1623 |
-
# range_score = 0.15
|
1624 |
-
# position = (score - 0.4) / 0.2
|
1625 |
-
# return base + (sigmoid_transform(position) * range_score)
|
1626 |
-
|
1627 |
-
# elif score < 0.8:
|
1628 |
-
# # 良好匹配:快速增長
|
1629 |
-
# base = 0.85
|
1630 |
-
# range_score = 0.10
|
1631 |
-
# position = (score - 0.6) / 0.2
|
1632 |
-
# return base + (sigmoid_transform(position) * range_score)
|
1633 |
-
|
1634 |
-
# elif score < 0.9:
|
1635 |
-
# # 優秀匹配:接近最高分
|
1636 |
-
# base = 0.95
|
1637 |
-
# range_score = 0.03
|
1638 |
-
# position = (score - 0.8) / 0.1
|
1639 |
-
# return base + (sigmoid_transform(position) * range_score)
|
1640 |
-
|
1641 |
-
# else:
|
1642 |
-
# # 完美匹配:可能達到最高分
|
1643 |
-
# base = 0.98
|
1644 |
-
# range_score = 0.02
|
1645 |
-
# position = (score - 0.9) / 0.1
|
1646 |
-
# return base + (sigmoid_transform(position) * range_score)
|
1647 |
-
|
1648 |
|
1649 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1650 |
"""
|
1651 |
重構的品種相容性評分系統
|
1652 |
-
|
1653 |
"""
|
1654 |
def evaluate_perfect_conditions():
|
1655 |
-
"""
|
1656 |
perfect_matches = {
|
1657 |
-
'size_match':
|
1658 |
-
'exercise_match':
|
1659 |
-
'experience_match':
|
1660 |
'general_match': False
|
1661 |
}
|
1662 |
|
1663 |
-
#
|
1664 |
if user_prefs.living_space == 'apartment':
|
1665 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1666 |
elif user_prefs.living_space == 'house_large':
|
1667 |
-
|
|
|
|
|
|
|
|
|
|
|
1668 |
|
1669 |
-
#
|
1670 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1671 |
-
|
1672 |
-
|
1673 |
-
|
1674 |
-
|
1675 |
-
|
1676 |
-
|
1677 |
-
|
1678 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1679 |
care_level = breed_info.get('Care Level', 'MODERATE')
|
1680 |
-
if care_level == 'High'
|
1681 |
-
|
1682 |
-
|
1683 |
-
|
1684 |
-
|
1685 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1686 |
|
1687 |
# 一般條件匹配
|
1688 |
if all(score >= 0.85 for score in scores.values()):
|
@@ -1691,11 +1511,11 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
1691 |
return perfect_matches
|
1692 |
|
1693 |
def calculate_weights():
|
1694 |
-
"""
|
1695 |
base_weights = {
|
1696 |
'space': 0.20,
|
1697 |
'exercise': 0.20,
|
1698 |
-
'experience': 0.20,
|
1699 |
'grooming': 0.15,
|
1700 |
'health': 0.15,
|
1701 |
'noise': 0.10
|
@@ -1704,15 +1524,25 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
1704 |
# 極端條件權重調整
|
1705 |
multipliers = {}
|
1706 |
|
1707 |
-
#
|
1708 |
if user_prefs.experience_level == 'beginner':
|
1709 |
-
|
|
|
|
|
|
|
1710 |
elif user_prefs.experience_level == 'advanced':
|
1711 |
-
|
1712 |
-
|
1713 |
-
|
1714 |
-
|
1715 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1716 |
elif user_prefs.exercise_time < 30:
|
1717 |
multipliers['exercise'] = 3.5
|
1718 |
|
@@ -1721,12 +1551,37 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
1721 |
multipliers['space'] = 2.5
|
1722 |
multipliers['noise'] = 2.0
|
1723 |
|
|
|
|
|
|
|
|
|
1724 |
# 應用乘數
|
1725 |
for key, multiplier in multipliers.items():
|
1726 |
base_weights[key] *= multiplier
|
1727 |
|
1728 |
return base_weights
|
1729 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1730 |
# 評估完美匹配條件
|
1731 |
perfect_conditions = evaluate_perfect_conditions()
|
1732 |
|
@@ -1740,23 +1595,23 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
1740 |
# 計算基礎分數
|
1741 |
base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
1742 |
|
1743 |
-
#
|
1744 |
perfect_bonus = 1.0
|
1745 |
-
|
1746 |
-
|
1747 |
-
|
1748 |
-
perfect_bonus += 0.2
|
1749 |
-
if perfect_conditions['experience_match']:
|
1750 |
-
perfect_bonus += 0.2
|
1751 |
if perfect_conditions['general_match']:
|
1752 |
perfect_bonus += 0.2
|
1753 |
|
1754 |
# 品種特性加成
|
1755 |
-
breed_bonus = calculate_breed_bonus(breed_info, user_prefs) * 1.5
|
1756 |
|
1757 |
# 計算最終分數
|
1758 |
final_score = (base_score * 0.7 + breed_bonus * 0.3) * perfect_bonus
|
1759 |
|
|
|
|
|
|
|
1760 |
return min(1.0, final_score)
|
1761 |
|
1762 |
|
|
|
409 |
|
410 |
|
411 |
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
|
412 |
+
"""計算品種與使用者條件的相容性分數"""
|
413 |
try:
|
414 |
print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
|
415 |
print(f"Breed info keys: {breed_info.keys()}")
|
|
|
417 |
if 'Size' not in breed_info:
|
418 |
print("Missing Size information")
|
419 |
raise KeyError("Size information missing")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
|
421 |
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
422 |
"""
|
423 |
+
1. 動態的基礎分數矩陣
|
|
|
|
|
|
|
424 |
2. 強化空間品質評估
|
425 |
3. 增加極端情況處理
|
426 |
4. 考慮不同空間組合的協同效應
|
|
|
1297 |
|
1298 |
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1299 |
# """
|
1300 |
+
# 重構的品種相容性評分系統
|
1301 |
+
# 目標:實現更大的分數差異和更高的頂部分數
|
|
|
|
|
|
|
|
|
1302 |
# """
|
1303 |
+
# def evaluate_perfect_conditions():
|
1304 |
+
# """評估完美條件匹配度"""
|
1305 |
+
# perfect_matches = {
|
1306 |
+
# 'size_match': False,
|
1307 |
+
# 'exercise_match': False,
|
1308 |
+
# 'experience_match': False,
|
1309 |
+
# 'general_match': False
|
1310 |
+
# }
|
1311 |
|
1312 |
+
# # 體型與空間匹配
|
1313 |
+
# if user_prefs.living_space == 'apartment':
|
1314 |
+
# perfect_matches['size_match'] = breed_info['Size'] == 'Small'
|
1315 |
+
# elif user_prefs.living_space == 'house_large':
|
1316 |
+
# perfect_matches['size_match'] = breed_info['Size'] in ['Medium', 'Large']
|
1317 |
|
1318 |
+
# # 運動需求匹配
|
1319 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1320 |
+
# if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time >= 150:
|
1321 |
+
# perfect_matches['exercise_match'] = True
|
1322 |
+
# elif exercise_needs == 'LOW' and 30 <= user_prefs.exercise_time <= 90:
|
1323 |
+
# perfect_matches['exercise_match'] = True
|
1324 |
+
# elif 60 <= user_prefs.exercise_time <= 120:
|
1325 |
+
# perfect_matches['exercise_match'] = True
|
1326 |
|
1327 |
+
# # 經驗匹配
|
1328 |
# care_level = breed_info.get('Care Level', 'MODERATE')
|
1329 |
+
# if care_level == 'High' and user_prefs.experience_level == 'advanced':
|
1330 |
+
# perfect_matches['experience_match'] = True
|
1331 |
+
# elif care_level == 'Low' and user_prefs.experience_level == 'beginner':
|
1332 |
+
# perfect_matches['experience_match'] = True
|
1333 |
+
# elif user_prefs.experience_level == 'intermediate':
|
1334 |
+
# perfect_matches['experience_match'] = True
|
1335 |
+
|
1336 |
+
# # 一般條件匹配
|
1337 |
+
# if all(score >= 0.85 for score in scores.values()):
|
1338 |
+
# perfect_matches['general_match'] = True
|
1339 |
|
1340 |
+
# return perfect_matches
|
1341 |
|
1342 |
+
# def calculate_weights():
|
1343 |
# """計算動態權重"""
|
1344 |
+
# base_weights = {
|
|
|
1345 |
# 'space': 0.20,
|
1346 |
# 'exercise': 0.20,
|
1347 |
+
# 'experience': 0.20,
|
1348 |
# 'grooming': 0.15,
|
1349 |
# 'health': 0.15,
|
1350 |
+
# 'noise': 0.10
|
1351 |
# }
|
1352 |
|
1353 |
+
# # 極端條件權重調整
|
1354 |
+
# multipliers = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1355 |
|
1356 |
+
# # 經驗權重調整
|
1357 |
+
# if user_prefs.experience_level == 'beginner':
|
1358 |
+
# multipliers['experience'] = 3.0 # 新手經驗極其重要
|
1359 |
+
# elif user_prefs.experience_level == 'advanced':
|
1360 |
+
# multipliers['experience'] = 2.5 # 專家經驗很重要
|
1361 |
+
|
1362 |
+
# # 運動需求權重調整
|
1363 |
+
# if user_prefs.exercise_time > 150:
|
1364 |
+
# multipliers['exercise'] = 3.0
|
1365 |
+
# elif user_prefs.exercise_time < 30:
|
1366 |
+
# multipliers['exercise'] = 3.5
|
1367 |
+
|
1368 |
+
# # 空間限制權重調整
|
1369 |
+
# if user_prefs.living_space == 'apartment':
|
1370 |
+
# multipliers['space'] = 2.5
|
1371 |
+
# multipliers['noise'] = 2.0
|
1372 |
|
1373 |
+
# # 應用乘數
|
1374 |
+
# for key, multiplier in multipliers.items():
|
1375 |
+
# base_weights[key] *= multiplier
|
1376 |
|
1377 |
+
# return base_weights
|
1378 |
|
1379 |
+
# # 評估完美匹配條件
|
1380 |
+
# perfect_conditions = evaluate_perfect_conditions()
|
1381 |
|
1382 |
# # 計算動態權重
|
1383 |
+
# weights = calculate_weights()
|
1384 |
|
1385 |
# # 正規化權重
|
1386 |
# total_weight = sum(weights.values())
|
1387 |
# normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
1388 |
|
1389 |
+
# # 計算基礎分數
|
1390 |
+
# base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
|
|
|
|
|
|
|
|
|
|
1391 |
|
1392 |
+
# # 完美匹配獎勵
|
1393 |
+
# perfect_bonus = 1.0
|
1394 |
+
# if perfect_conditions['size_match']:
|
1395 |
+
# perfect_bonus += 0.2
|
1396 |
+
# if perfect_conditions['exercise_match']:
|
1397 |
+
# perfect_bonus += 0.2
|
1398 |
+
# if perfect_conditions['experience_match']:
|
1399 |
+
# perfect_bonus += 0.2
|
1400 |
+
# if perfect_conditions['general_match']:
|
1401 |
+
# perfect_bonus += 0.2
|
1402 |
+
|
1403 |
# # 品種特性加成
|
1404 |
+
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs) * 1.5 # 增加品種特性影響
|
|
|
|
|
|
|
|
|
|
|
|
|
1405 |
|
1406 |
+
# # 計算最終分數
|
1407 |
+
# final_score = (base_score * 0.7 + breed_bonus * 0.3) * perfect_bonus
|
|
|
1408 |
|
1409 |
+
# return min(1.0, final_score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1410 |
|
1411 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1412 |
"""
|
1413 |
重構的品種相容性評分系統
|
1414 |
+
目標:實現更大的分數差異和更高的頂部分數,更精確的條件匹配
|
1415 |
"""
|
1416 |
def evaluate_perfect_conditions():
|
1417 |
+
"""評估完美條件匹配度,允許部分匹配"""
|
1418 |
perfect_matches = {
|
1419 |
+
'size_match': 0,
|
1420 |
+
'exercise_match': 0,
|
1421 |
+
'experience_match': 0,
|
1422 |
'general_match': False
|
1423 |
}
|
1424 |
|
1425 |
+
# 體型與空間匹配更細緻化
|
1426 |
if user_prefs.living_space == 'apartment':
|
1427 |
+
if breed_info['Size'] == 'Small':
|
1428 |
+
perfect_matches['size_match'] = 1.0
|
1429 |
+
elif breed_info['Size'] == 'Medium':
|
1430 |
+
perfect_matches['size_match'] = 0.5
|
1431 |
+
else:
|
1432 |
+
perfect_matches['size_match'] = 0
|
1433 |
+
elif user_prefs.living_space == 'house_small':
|
1434 |
+
if breed_info['Size'] in ['Small', 'Medium']:
|
1435 |
+
perfect_matches['size_match'] = 1.0
|
1436 |
+
elif breed_info['Size'] == 'Large':
|
1437 |
+
perfect_matches['size_match'] = 0.6
|
1438 |
+
else:
|
1439 |
+
perfect_matches['size_match'] = 0.3
|
1440 |
elif user_prefs.living_space == 'house_large':
|
1441 |
+
if breed_info['Size'] in ['Medium', 'Large']:
|
1442 |
+
perfect_matches['size_match'] = 1.0
|
1443 |
+
elif breed_info['Size'] == 'Small':
|
1444 |
+
perfect_matches['size_match'] = 0.7
|
1445 |
+
else:
|
1446 |
+
perfect_matches['size_match'] = 0.8
|
1447 |
|
1448 |
+
# 運動需求匹配更精確
|
1449 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1450 |
+
exercise_time = user_prefs.exercise_time
|
1451 |
+
|
1452 |
+
if exercise_needs == 'VERY HIGH':
|
1453 |
+
if exercise_time >= 150:
|
1454 |
+
perfect_matches['exercise_match'] = 1.0
|
1455 |
+
elif exercise_time >= 120:
|
1456 |
+
perfect_matches['exercise_match'] = 0.7
|
1457 |
+
elif exercise_time >= 90:
|
1458 |
+
perfect_matches['exercise_match'] = 0.4
|
1459 |
+
else:
|
1460 |
+
perfect_matches['exercise_match'] = 0
|
1461 |
+
elif exercise_needs == 'HIGH':
|
1462 |
+
if 120 <= exercise_time <= 150:
|
1463 |
+
perfect_matches['exercise_match'] = 1.0
|
1464 |
+
elif exercise_time >= 90:
|
1465 |
+
perfect_matches['exercise_match'] = 0.8
|
1466 |
+
elif exercise_time >= 60:
|
1467 |
+
perfect_matches['exercise_match'] = 0.5
|
1468 |
+
else:
|
1469 |
+
perfect_matches['exercise_match'] = 0.2
|
1470 |
+
elif exercise_needs == 'MODERATE':
|
1471 |
+
if 60 <= exercise_time <= 120:
|
1472 |
+
perfect_matches['exercise_match'] = 1.0
|
1473 |
+
elif exercise_time > 120:
|
1474 |
+
perfect_matches['exercise_match'] = 0.8
|
1475 |
+
else:
|
1476 |
+
perfect_matches['exercise_match'] = 0.6
|
1477 |
+
elif exercise_needs == 'LOW':
|
1478 |
+
if 30 <= exercise_time <= 90:
|
1479 |
+
perfect_matches['exercise_match'] = 1.0
|
1480 |
+
elif exercise_time > 90:
|
1481 |
+
perfect_matches['exercise_match'] = 0.7
|
1482 |
+
else:
|
1483 |
+
perfect_matches['exercise_match'] = 0.5
|
1484 |
+
|
1485 |
+
# 經驗匹配更細緻
|
1486 |
care_level = breed_info.get('Care Level', 'MODERATE')
|
1487 |
+
if care_level == 'High':
|
1488 |
+
if user_prefs.experience_level == 'advanced':
|
1489 |
+
perfect_matches['experience_match'] = 1.0
|
1490 |
+
elif user_prefs.experience_level == 'intermediate':
|
1491 |
+
perfect_matches['experience_match'] = 0.6
|
1492 |
+
else:
|
1493 |
+
perfect_matches['experience_match'] = 0.2
|
1494 |
+
elif care_level == 'Moderate':
|
1495 |
+
if user_prefs.experience_level == 'advanced':
|
1496 |
+
perfect_matches['experience_match'] = 0.9
|
1497 |
+
elif user_prefs.experience_level == 'intermediate':
|
1498 |
+
perfect_matches['experience_match'] = 1.0
|
1499 |
+
else:
|
1500 |
+
perfect_matches['experience_match'] = 0.7
|
1501 |
+
elif care_level == 'Low':
|
1502 |
+
if user_prefs.experience_level == 'beginner':
|
1503 |
+
perfect_matches['experience_match'] = 1.0
|
1504 |
+
else:
|
1505 |
+
perfect_matches['experience_match'] = 0.9
|
1506 |
|
1507 |
# 一般條件匹配
|
1508 |
if all(score >= 0.85 for score in scores.values()):
|
|
|
1511 |
return perfect_matches
|
1512 |
|
1513 |
def calculate_weights():
|
1514 |
+
"""計算更動態的權重"""
|
1515 |
base_weights = {
|
1516 |
'space': 0.20,
|
1517 |
'exercise': 0.20,
|
1518 |
+
'experience': 0.20,
|
1519 |
'grooming': 0.15,
|
1520 |
'health': 0.15,
|
1521 |
'noise': 0.10
|
|
|
1524 |
# 極端條件權重調整
|
1525 |
multipliers = {}
|
1526 |
|
1527 |
+
# 經驗權重更細緻的調整
|
1528 |
if user_prefs.experience_level == 'beginner':
|
1529 |
+
if breed_info.get('Care Level') == 'High':
|
1530 |
+
multipliers['experience'] = 3.5
|
1531 |
+
else:
|
1532 |
+
multipliers['experience'] = 3.0
|
1533 |
elif user_prefs.experience_level == 'advanced':
|
1534 |
+
if breed_info.get('Care Level') == 'High':
|
1535 |
+
multipliers['experience'] = 2.8
|
1536 |
+
else:
|
1537 |
+
multipliers['experience'] = 2.5
|
1538 |
+
|
1539 |
+
# 運動需求更細緻的調整
|
1540 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1541 |
+
if exercise_needs == 'VERY HIGH':
|
1542 |
+
if user_prefs.exercise_time < 90:
|
1543 |
+
multipliers['exercise'] = 4.0
|
1544 |
+
elif user_prefs.exercise_time > 150:
|
1545 |
+
multipliers['exercise'] = 3.0
|
1546 |
elif user_prefs.exercise_time < 30:
|
1547 |
multipliers['exercise'] = 3.5
|
1548 |
|
|
|
1551 |
multipliers['space'] = 2.5
|
1552 |
multipliers['noise'] = 2.0
|
1553 |
|
1554 |
+
# 噪音敏感度調整
|
1555 |
+
if user_prefs.noise_tolerance == 'low':
|
1556 |
+
multipliers['noise'] = multipliers.get('noise', 1.0) * 2.5
|
1557 |
+
|
1558 |
# 應用乘數
|
1559 |
for key, multiplier in multipliers.items():
|
1560 |
base_weights[key] *= multiplier
|
1561 |
|
1562 |
return base_weights
|
1563 |
|
1564 |
+
def apply_special_case_adjustments(score):
|
1565 |
+
"""處理特殊情況"""
|
1566 |
+
# 新手不適合的特殊情況
|
1567 |
+
if user_prefs.experience_level == 'beginner':
|
1568 |
+
if (breed_info.get('Care Level') == 'High' and
|
1569 |
+
breed_info.get('Exercise Needs') == 'VERY HIGH'):
|
1570 |
+
score *= 0.7
|
1571 |
+
|
1572 |
+
# 運動時間極端不匹配的情況
|
1573 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1574 |
+
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
|
1575 |
+
score *= 0.6
|
1576 |
+
|
1577 |
+
# 噪音敏感度極端情況
|
1578 |
+
if (user_prefs.noise_tolerance == 'low' and
|
1579 |
+
breed_info.get('Breed') in breed_noise_info and
|
1580 |
+
breed_noise_info[breed_info['Breed']]['noise_level'].lower() == 'high'):
|
1581 |
+
score *= 0.7
|
1582 |
+
|
1583 |
+
return score
|
1584 |
+
|
1585 |
# 評估完美匹配條件
|
1586 |
perfect_conditions = evaluate_perfect_conditions()
|
1587 |
|
|
|
1595 |
# 計算基礎分數
|
1596 |
base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
1597 |
|
1598 |
+
# 完美匹配獎勵更動態
|
1599 |
perfect_bonus = 1.0
|
1600 |
+
perfect_bonus += 0.2 * perfect_conditions['size_match']
|
1601 |
+
perfect_bonus += 0.2 * perfect_conditions['exercise_match']
|
1602 |
+
perfect_bonus += 0.2 * perfect_conditions['experience_match']
|
|
|
|
|
|
|
1603 |
if perfect_conditions['general_match']:
|
1604 |
perfect_bonus += 0.2
|
1605 |
|
1606 |
# 品種特性加成
|
1607 |
+
breed_bonus = calculate_breed_bonus(breed_info, user_prefs) * 1.5
|
1608 |
|
1609 |
# 計算最終分數
|
1610 |
final_score = (base_score * 0.7 + breed_bonus * 0.3) * perfect_bonus
|
1611 |
|
1612 |
+
# 應用特殊情況調整
|
1613 |
+
final_score = apply_special_case_adjustments(final_score)
|
1614 |
+
|
1615 |
return min(1.0, final_score)
|
1616 |
|
1617 |
|