Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -194,7 +194,7 @@ async def predict_single_dog(image):
|
|
194 |
return top1_prob, topk_breeds, topk_probs_percent
|
195 |
|
196 |
|
197 |
-
async def detect_multiple_dogs(image, conf_threshold=0.
|
198 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
199 |
dogs = []
|
200 |
boxes = []
|
@@ -203,28 +203,27 @@ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.3):
|
|
203 |
xyxy = box.xyxy[0].tolist()
|
204 |
confidence = box.conf.item()
|
205 |
boxes.append((xyxy, confidence))
|
206 |
-
|
207 |
-
# 如果沒有檢測到狗,使用整張圖片
|
208 |
if not boxes:
|
209 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
210 |
else:
|
211 |
-
# 按置信度排序
|
212 |
sorted_boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
213 |
-
|
214 |
-
# 使用非極大值抑制(NMS)來合併重疊的框
|
215 |
nms_boxes = non_max_suppression(sorted_boxes, iou_threshold)
|
216 |
|
217 |
for box, confidence in nms_boxes:
|
218 |
x1, y1, x2, y2 = box
|
219 |
-
# 擴大框的大小以包含更多上下文
|
220 |
w, h = x2 - x1, y2 - y1
|
221 |
-
x1 = max(0, x1 - w * 0.
|
222 |
-
y1 = max(0, y1 - h * 0.
|
223 |
-
x2 = min(image.width, x2 + w * 0.
|
224 |
-
y2 = min(image.height, y2 + h * 0.
|
225 |
cropped_image = image.crop((x1, y1, x2, y2))
|
226 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
227 |
-
|
|
|
|
|
|
|
|
|
228 |
return dogs
|
229 |
|
230 |
def non_max_suppression(boxes, iou_threshold):
|
@@ -447,69 +446,6 @@ async def process_single_dog(image):
|
|
447 |
# iface.launch()
|
448 |
|
449 |
|
450 |
-
# async def predict(image):
|
451 |
-
# if image is None:
|
452 |
-
# return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
453 |
-
|
454 |
-
# try:
|
455 |
-
# if isinstance(image, np.ndarray):
|
456 |
-
# image = Image.fromarray(image)
|
457 |
-
|
458 |
-
# dogs = await detect_multiple_dogs(image)
|
459 |
-
|
460 |
-
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
461 |
-
# explanations = []
|
462 |
-
# buttons = []
|
463 |
-
# annotated_image = image.copy()
|
464 |
-
# draw = ImageDraw.Draw(annotated_image)
|
465 |
-
# font = ImageFont.load_default()
|
466 |
-
|
467 |
-
# for i, (cropped_image, _, box) in enumerate(dogs):
|
468 |
-
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
469 |
-
# color = color_list[i % len(color_list)]
|
470 |
-
# draw.rectangle(box, outline=color, width=3)
|
471 |
-
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
472 |
-
|
473 |
-
# if top1_prob >= 0.5:
|
474 |
-
# breed = topk_breeds[0]
|
475 |
-
# description = get_dog_description(breed)
|
476 |
-
# formatted_description = format_description(description, breed)
|
477 |
-
# explanations.append(f"Dog {i+1}: {formatted_description}")
|
478 |
-
# elif top1_prob >= 0.2:
|
479 |
-
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
480 |
-
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
481 |
-
# explanations.append(dog_explanation)
|
482 |
-
# buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
|
483 |
-
# else:
|
484 |
-
# explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
485 |
-
|
486 |
-
# final_explanation = "\n\n".join(explanations)
|
487 |
-
# if buttons:
|
488 |
-
# final_explanation += "\n\nClick on a button to view more information about the breed."
|
489 |
-
# initial_state = {
|
490 |
-
# "explanation": final_explanation,
|
491 |
-
# "buttons": buttons,
|
492 |
-
# "show_back": True,
|
493 |
-
# "image": annotated_image,
|
494 |
-
# "is_multi_dog": len(dogs) > 1,
|
495 |
-
# "dogs_info": explanations
|
496 |
-
# }
|
497 |
-
# return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
|
498 |
-
# else:
|
499 |
-
# initial_state = {
|
500 |
-
# "explanation": final_explanation,
|
501 |
-
# "buttons": [],
|
502 |
-
# "show_back": False,
|
503 |
-
# "image": annotated_image,
|
504 |
-
# "is_multi_dog": len(dogs) > 1,
|
505 |
-
# "dogs_info": explanations
|
506 |
-
# }
|
507 |
-
# return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
|
508 |
-
|
509 |
-
# except Exception as e:
|
510 |
-
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
511 |
-
# print(error_msg)
|
512 |
-
# return error_msg, None, gr.update(visible=False, choices=[]), None
|
513 |
|
514 |
async def predict(image):
|
515 |
if image is None:
|
@@ -528,27 +464,27 @@ async def predict(image):
|
|
528 |
draw = ImageDraw.Draw(annotated_image)
|
529 |
font = ImageFont.load_default()
|
530 |
|
531 |
-
for i, (cropped_image,
|
532 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
533 |
color = color_list[i % len(color_list)]
|
534 |
draw.rectangle(box, outline=color, width=3)
|
535 |
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
536 |
|
537 |
-
|
|
|
|
|
|
|
538 |
breed = topk_breeds[0]
|
539 |
description = get_dog_description(breed)
|
540 |
formatted_description = format_description(description, breed)
|
541 |
explanations.append(f"Dog {i+1}: {formatted_description}")
|
542 |
-
elif
|
543 |
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
544 |
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
545 |
explanations.append(dog_explanation)
|
546 |
buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
|
547 |
else:
|
548 |
-
|
549 |
-
explanations.append("The image is unclear or does not contain a recognized dog breed.")
|
550 |
-
else:
|
551 |
-
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
552 |
|
553 |
final_explanation = "\n\n".join(explanations)
|
554 |
if buttons:
|
|
|
194 |
return top1_prob, topk_breeds, topk_probs_percent
|
195 |
|
196 |
|
197 |
+
async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.3):
|
198 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
199 |
dogs = []
|
200 |
boxes = []
|
|
|
203 |
xyxy = box.xyxy[0].tolist()
|
204 |
confidence = box.conf.item()
|
205 |
boxes.append((xyxy, confidence))
|
206 |
+
|
|
|
207 |
if not boxes:
|
208 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
209 |
else:
|
|
|
210 |
sorted_boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
|
|
|
|
211 |
nms_boxes = non_max_suppression(sorted_boxes, iou_threshold)
|
212 |
|
213 |
for box, confidence in nms_boxes:
|
214 |
x1, y1, x2, y2 = box
|
|
|
215 |
w, h = x2 - x1, y2 - y1
|
216 |
+
x1 = max(0, x1 - w * 0.1)
|
217 |
+
y1 = max(0, y1 - h * 0.1)
|
218 |
+
x2 = min(image.width, x2 + w * 0.1)
|
219 |
+
y2 = min(image.height, y2 + h * 0.1)
|
220 |
cropped_image = image.crop((x1, y1, x2, y2))
|
221 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
222 |
+
|
223 |
+
# 如果只檢測到一隻狗,但置信度較低,添加整張圖片作為備選
|
224 |
+
if len(dogs) == 1 and dogs[0][1] < 0.5:
|
225 |
+
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
226 |
+
|
227 |
return dogs
|
228 |
|
229 |
def non_max_suppression(boxes, iou_threshold):
|
|
|
446 |
# iface.launch()
|
447 |
|
448 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
|
450 |
async def predict(image):
|
451 |
if image is None:
|
|
|
464 |
draw = ImageDraw.Draw(annotated_image)
|
465 |
font = ImageFont.load_default()
|
466 |
|
467 |
+
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
468 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
469 |
color = color_list[i % len(color_list)]
|
470 |
draw.rectangle(box, outline=color, width=3)
|
471 |
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
472 |
|
473 |
+
# 結合 YOLO 檢測置信度和品種識別置信度
|
474 |
+
combined_confidence = detection_confidence * top1_prob
|
475 |
+
|
476 |
+
if combined_confidence >= 0.4:
|
477 |
breed = topk_breeds[0]
|
478 |
description = get_dog_description(breed)
|
479 |
formatted_description = format_description(description, breed)
|
480 |
explanations.append(f"Dog {i+1}: {formatted_description}")
|
481 |
+
elif combined_confidence >= 0.2:
|
482 |
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
483 |
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
484 |
explanations.append(dog_explanation)
|
485 |
buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
|
486 |
else:
|
487 |
+
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
|
|
|
|
|
|
488 |
|
489 |
final_explanation = "\n\n".join(explanations)
|
490 |
if buttons:
|