DawnC commited on
Commit
280eef2
·
verified ·
1 Parent(s): 0760bf4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -38
app.py CHANGED
@@ -192,6 +192,7 @@ async def predict_single_dog(image):
192
  topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
193
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
194
  return top1_prob, topk_breeds, topk_probs_percent
 
195
 
196
  async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
197
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
@@ -207,8 +208,8 @@ async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
207
  if not boxes:
208
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
209
  else:
210
- # 按置信度排序並選擇前4個框(如果有的話)
211
- sorted_boxes = sorted(boxes, key=lambda x: x[1], reverse=True)[:4]
212
 
213
  for box, confidence in sorted_boxes:
214
  x1, y1, x2, y2 = box
@@ -223,41 +224,6 @@ async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
223
 
224
  return dogs
225
 
226
- def merge_boxes(boxes, iou_threshold=0.5):
227
- merged = []
228
- while boxes:
229
- base_box = boxes.pop(0)
230
- i = 0
231
- while i < len(boxes):
232
- if calculate_iou(base_box[0], boxes[i][0]) > iou_threshold:
233
- base_box = merge_two_boxes(base_box, boxes.pop(i))
234
- else:
235
- i += 1
236
- merged.append(base_box)
237
- return merged
238
-
239
- def calculate_iou(box1, box2):
240
- x1 = max(box1[0], box2[0])
241
- y1 = max(box1[1], box2[1])
242
- x2 = min(box1[2], box2[2])
243
- y2 = min(box1[3], box2[3])
244
-
245
- intersection = max(0, x2 - x1) * max(0, y2 - y1)
246
- area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
247
- area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
248
-
249
- iou = intersection / float(area1 + area2 - intersection)
250
- return iou
251
-
252
- def merge_two_boxes(box1, box2):
253
- return (
254
- [min(box1[0][0], box2[0][0]),
255
- min(box1[0][1], box2[0][1]),
256
- max(box1[0][2], box2[0][2]),
257
- max(box1[0][3], box2[0][3])],
258
- max(box1[1], box2[1]) # 取較高的置信度
259
- )
260
-
261
 
262
  async def process_single_dog(image):
263
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
@@ -456,6 +422,70 @@ async def process_single_dog(image):
456
  # iface.launch()
457
 
458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459
  async def predict(image):
460
  if image is None:
461
  return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
@@ -490,7 +520,10 @@ async def predict(image):
490
  explanations.append(dog_explanation)
491
  buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
492
  else:
493
- explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
 
 
 
494
 
495
  final_explanation = "\n\n".join(explanations)
496
  if buttons:
 
192
  topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
193
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
194
  return top1_prob, topk_breeds, topk_probs_percent
195
+
196
 
197
  async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
198
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
 
208
  if not boxes:
209
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
210
  else:
211
+ # 按置信度排序並選擇所有框
212
+ sorted_boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
213
 
214
  for box, confidence in sorted_boxes:
215
  x1, y1, x2, y2 = box
 
224
 
225
  return dogs
226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
 
228
  async def process_single_dog(image):
229
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
 
422
  # iface.launch()
423
 
424
 
425
+ # async def predict(image):
426
+ # if image is None:
427
+ # return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
428
+
429
+ # try:
430
+ # if isinstance(image, np.ndarray):
431
+ # image = Image.fromarray(image)
432
+
433
+ # dogs = await detect_multiple_dogs(image)
434
+
435
+ # color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
436
+ # explanations = []
437
+ # buttons = []
438
+ # annotated_image = image.copy()
439
+ # draw = ImageDraw.Draw(annotated_image)
440
+ # font = ImageFont.load_default()
441
+
442
+ # for i, (cropped_image, _, box) in enumerate(dogs):
443
+ # top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
444
+ # color = color_list[i % len(color_list)]
445
+ # draw.rectangle(box, outline=color, width=3)
446
+ # draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
447
+
448
+ # if top1_prob >= 0.5:
449
+ # breed = topk_breeds[0]
450
+ # description = get_dog_description(breed)
451
+ # formatted_description = format_description(description, breed)
452
+ # explanations.append(f"Dog {i+1}: {formatted_description}")
453
+ # elif top1_prob >= 0.2:
454
+ # dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
455
+ # dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
456
+ # explanations.append(dog_explanation)
457
+ # buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
458
+ # else:
459
+ # explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
460
+
461
+ # final_explanation = "\n\n".join(explanations)
462
+ # if buttons:
463
+ # final_explanation += "\n\nClick on a button to view more information about the breed."
464
+ # initial_state = {
465
+ # "explanation": final_explanation,
466
+ # "buttons": buttons,
467
+ # "show_back": True,
468
+ # "image": annotated_image,
469
+ # "is_multi_dog": len(dogs) > 1,
470
+ # "dogs_info": explanations
471
+ # }
472
+ # return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
473
+ # else:
474
+ # initial_state = {
475
+ # "explanation": final_explanation,
476
+ # "buttons": [],
477
+ # "show_back": False,
478
+ # "image": annotated_image,
479
+ # "is_multi_dog": len(dogs) > 1,
480
+ # "dogs_info": explanations
481
+ # }
482
+ # return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
483
+
484
+ # except Exception as e:
485
+ # error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
486
+ # print(error_msg)
487
+ # return error_msg, None, gr.update(visible=False, choices=[]), None
488
+
489
  async def predict(image):
490
  if image is None:
491
  return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
 
520
  explanations.append(dog_explanation)
521
  buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
522
  else:
523
+ if len(dogs) == 1:
524
+ explanations.append("The image is unclear or does not contain a recognized dog breed.")
525
+ else:
526
+ explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
527
 
528
  final_explanation = "\n\n".join(explanations)
529
  if buttons: