Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,6 +13,10 @@ from urllib.parse import quote
|
|
13 |
from ultralytics import YOLO
|
14 |
import asyncio
|
15 |
import traceback
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
# 下載YOLOv8預訓練模型
|
@@ -152,29 +156,67 @@ def format_description(description, breed):
|
|
152 |
async def predict_single_dog(image):
|
153 |
return await asyncio.to_thread(_predict_single_dog, image)
|
154 |
|
155 |
-
def _predict_single_dog(image):
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
|
168 |
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
|
180 |
async def process_single_dog(image):
|
@@ -434,8 +476,8 @@ async def predict(image):
|
|
434 |
return final_explanation, annotated_image, [], gr.update(visible=False), initial_state
|
435 |
|
436 |
except Exception as e:
|
437 |
-
error_msg = f"An error occurred: {str(e)}"
|
438 |
-
|
439 |
return error_msg, None, [], gr.update(visible=False), None
|
440 |
|
441 |
def show_details(choice, previous_output, initial_state):
|
|
|
13 |
from ultralytics import YOLO
|
14 |
import asyncio
|
15 |
import traceback
|
16 |
+
import logging
|
17 |
+
|
18 |
+
logging.basicConfig(level=logging.DEBUG)
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
|
21 |
|
22 |
# 下載YOLOv8預訓練模型
|
|
|
156 |
async def predict_single_dog(image):
|
157 |
return await asyncio.to_thread(_predict_single_dog, image)
|
158 |
|
159 |
+
# def _predict_single_dog(image):
|
160 |
+
# image_tensor = preprocess_image(image)
|
161 |
+
# with torch.no_grad():
|
162 |
+
# output = model(image_tensor)
|
163 |
+
# logits = output[0] if isinstance(output, tuple) else output
|
164 |
+
# probabilities = F.softmax(logits, dim=1)
|
165 |
+
# topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
166 |
+
# top1_prob = topk_probs[0][0].item()
|
167 |
+
# topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
168 |
+
# topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
169 |
+
# return top1_prob, topk_breeds, topk_probs_percent
|
170 |
+
|
171 |
+
|
172 |
+
# async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
|
173 |
+
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
174 |
+
# dogs = []
|
175 |
+
# for box in results.boxes:
|
176 |
+
# if box.cls == 16: # COCO 資料集中狗的類別是 16
|
177 |
+
# xyxy = box.xyxy[0].tolist()
|
178 |
+
# confidence = box.conf.item()
|
179 |
+
# cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
180 |
+
# dogs.append((cropped_image, confidence, xyxy))
|
181 |
+
# return dogs
|
182 |
|
183 |
|
184 |
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
|
185 |
+
try:
|
186 |
+
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
187 |
+
dogs = []
|
188 |
+
for box in results.boxes:
|
189 |
+
if box.cls == 16: # COCO dataset class for dog is 16
|
190 |
+
xyxy = box.xyxy[0].tolist()
|
191 |
+
confidence = box.conf.item()
|
192 |
+
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
193 |
+
dogs.append((cropped_image, confidence, xyxy))
|
194 |
+
|
195 |
+
# If no dogs are detected, use the whole image
|
196 |
+
if not dogs:
|
197 |
+
logger.info("No dogs detected, using the whole image.")
|
198 |
+
dogs = [(image, 1.0, [0, 0, image.width, image.height])]
|
199 |
+
|
200 |
+
return dogs
|
201 |
+
except Exception as e:
|
202 |
+
logger.error(f"Error in detect_multiple_dogs: {str(e)}")
|
203 |
+
return [(image, 1.0, [0, 0, image.width, image.height])]
|
204 |
+
|
205 |
+
async def predict_single_dog(image):
|
206 |
+
try:
|
207 |
+
image_tensor = preprocess_image(image)
|
208 |
+
with torch.no_grad():
|
209 |
+
output = model(image_tensor)
|
210 |
+
logits = output[0] if isinstance(output, tuple) else output
|
211 |
+
probabilities = F.softmax(logits, dim=1)
|
212 |
+
topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
213 |
+
top1_prob = topk_probs[0][0].item()
|
214 |
+
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
215 |
+
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
216 |
+
return top1_prob, topk_breeds, topk_probs_percent
|
217 |
+
except Exception as e:
|
218 |
+
logger.error(f"Error in predict_single_dog: {str(e)}")
|
219 |
+
return 0, ["Unknown"], ["0%"]
|
220 |
|
221 |
|
222 |
async def process_single_dog(image):
|
|
|
476 |
return final_explanation, annotated_image, [], gr.update(visible=False), initial_state
|
477 |
|
478 |
except Exception as e:
|
479 |
+
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
480 |
+
logger.error(error_msg)
|
481 |
return error_msg, None, [], gr.update(visible=False), None
|
482 |
|
483 |
def show_details(choice, previous_output, initial_state):
|