Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -252,17 +252,35 @@ def get_akc_breeds_link():
|
|
252 |
|
253 |
|
254 |
def detect_dogs(image):
|
|
|
255 |
results = model_yolo(image)
|
|
|
|
|
|
|
|
|
256 |
dogs = []
|
257 |
for result in results:
|
|
|
|
|
258 |
for box in result.boxes:
|
|
|
|
|
|
|
259 |
if box.cls == 16: # COCO 資料集中的狗類別是 16
|
260 |
xyxy = box.xyxy[0].tolist()
|
261 |
confidence = box.conf.item()
|
|
|
|
|
|
|
|
|
262 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
263 |
dogs.append((cropped_image, confidence, xyxy))
|
|
|
|
|
|
|
264 |
return dogs
|
265 |
|
|
|
266 |
def predict_breed(cropped_image):
|
267 |
image_tensor = preprocess_image(cropped_image)
|
268 |
with torch.no_grad():
|
|
|
252 |
|
253 |
|
254 |
def detect_dogs(image):
|
255 |
+
# 使用 YOLO 模型進行偵測
|
256 |
results = model_yolo(image)
|
257 |
+
|
258 |
+
# 打印 YOLO 偵測結果
|
259 |
+
print(f"YOLO detection results: {results}")
|
260 |
+
|
261 |
dogs = []
|
262 |
for result in results:
|
263 |
+
# 打印每個結果
|
264 |
+
print(f"Result: {result}")
|
265 |
for box in result.boxes:
|
266 |
+
# 打印邊界框的類別和座標
|
267 |
+
print(f"Detected class: {box.cls}, Confidence: {box.conf}, Box coordinates: {box.xyxy}")
|
268 |
+
|
269 |
if box.cls == 16: # COCO 資料集中的狗類別是 16
|
270 |
xyxy = box.xyxy[0].tolist()
|
271 |
confidence = box.conf.item()
|
272 |
+
|
273 |
+
# 確認圖片裁切過程正確
|
274 |
+
print(f"Cropping image at coordinates: {xyxy}")
|
275 |
+
|
276 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
277 |
dogs.append((cropped_image, confidence, xyxy))
|
278 |
+
|
279 |
+
# 最後打印偵測到的狗的數量
|
280 |
+
print(f"Number of dogs detected: {len(dogs)}")
|
281 |
return dogs
|
282 |
|
283 |
+
|
284 |
def predict_breed(cropped_image):
|
285 |
image_tensor = preprocess_image(cropped_image)
|
286 |
with torch.no_grad():
|