Spaces:
Sleeping
Sleeping
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +349 -297
scoring_calculation_system.py
CHANGED
@@ -1294,110 +1294,143 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1294 |
|
1295 |
return min(0.2, adaptability_score)
|
1296 |
|
|
|
1297 |
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1298 |
# """
|
1299 |
-
#
|
1300 |
-
#
|
|
|
|
|
|
|
1301 |
# """
|
1302 |
# def evaluate_perfect_conditions():
|
1303 |
-
# """
|
1304 |
# perfect_matches = {
|
1305 |
# 'size_match': 0,
|
1306 |
# 'exercise_match': 0,
|
1307 |
# 'experience_match': 0,
|
1308 |
-
# '
|
1309 |
# }
|
1310 |
|
1311 |
-
# #
|
1312 |
-
#
|
1313 |
-
#
|
1314 |
-
#
|
1315 |
-
#
|
1316 |
-
#
|
1317 |
-
#
|
1318 |
-
#
|
1319 |
-
#
|
1320 |
-
#
|
1321 |
-
#
|
1322 |
-
#
|
1323 |
-
#
|
1324 |
-
#
|
1325 |
-
#
|
1326 |
-
#
|
1327 |
-
#
|
1328 |
-
#
|
1329 |
-
#
|
1330 |
-
#
|
1331 |
-
#
|
1332 |
-
#
|
1333 |
-
|
1334 |
-
# #
|
1335 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1336 |
# exercise_time = user_prefs.exercise_time
|
|
|
1337 |
|
1338 |
-
#
|
1339 |
-
#
|
1340 |
-
#
|
1341 |
-
#
|
1342 |
-
#
|
1343 |
-
#
|
1344 |
-
#
|
1345 |
-
|
1346 |
-
#
|
1347 |
-
#
|
1348 |
-
#
|
1349 |
-
#
|
1350 |
-
#
|
1351 |
-
#
|
1352 |
-
#
|
1353 |
-
#
|
1354 |
-
|
1355 |
-
#
|
1356 |
-
#
|
1357 |
-
#
|
1358 |
-
#
|
1359 |
-
#
|
1360 |
-
#
|
1361 |
-
#
|
1362 |
-
#
|
1363 |
-
#
|
1364 |
-
#
|
1365 |
-
#
|
1366 |
-
#
|
1367 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1368 |
# else:
|
1369 |
-
#
|
1370 |
|
1371 |
-
# #
|
1372 |
-
#
|
1373 |
-
#
|
1374 |
-
#
|
1375 |
-
#
|
1376 |
-
#
|
1377 |
-
#
|
1378 |
-
|
1379 |
-
#
|
1380 |
-
|
1381 |
-
# if user_prefs.experience_level == 'advanced':
|
1382 |
-
# perfect_matches['experience_match'] = 0.9
|
1383 |
-
# elif user_prefs.experience_level == 'intermediate':
|
1384 |
-
# perfect_matches['experience_match'] = 1.0
|
1385 |
-
# else:
|
1386 |
-
# perfect_matches['experience_match'] = 0.7
|
1387 |
-
# elif care_level == 'Low':
|
1388 |
-
# if user_prefs.experience_level == 'beginner':
|
1389 |
-
# perfect_matches['experience_match'] = 1.0
|
1390 |
-
# else:
|
1391 |
-
# perfect_matches['experience_match'] = 0.9
|
1392 |
-
|
1393 |
-
# # 一般條件匹配
|
1394 |
-
# if all(score >= 0.85 for score in scores.values()):
|
1395 |
-
# perfect_matches['general_match'] = True
|
1396 |
-
|
1397 |
# return perfect_matches
|
1398 |
|
1399 |
# def calculate_weights():
|
1400 |
-
# """
|
1401 |
# base_weights = {
|
1402 |
# 'space': 0.20,
|
1403 |
# 'exercise': 0.20,
|
@@ -1407,22 +1440,16 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1407 |
# 'noise': 0.10
|
1408 |
# }
|
1409 |
|
1410 |
-
# # 極端條件權重調整
|
1411 |
# multipliers = {}
|
1412 |
|
1413 |
-
# #
|
1414 |
-
# if user_prefs.
|
1415 |
-
#
|
1416 |
-
#
|
1417 |
-
#
|
1418 |
-
# multipliers['
|
1419 |
-
|
1420 |
-
#
|
1421 |
-
# multipliers['experience'] = 2.8
|
1422 |
-
# else:
|
1423 |
-
# multipliers['experience'] = 2.5
|
1424 |
-
|
1425 |
-
# # 運動需求更細緻的調整
|
1426 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1427 |
# if exercise_needs == 'VERY HIGH':
|
1428 |
# if user_prefs.exercise_time < 90:
|
@@ -1432,40 +1459,62 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1432 |
# elif user_prefs.exercise_time < 30:
|
1433 |
# multipliers['exercise'] = 3.5
|
1434 |
|
1435 |
-
# #
|
1436 |
-
# if user_prefs.
|
1437 |
-
#
|
1438 |
-
#
|
1439 |
-
|
|
|
|
|
1440 |
# # 噪音敏感度調整
|
1441 |
# if user_prefs.noise_tolerance == 'low':
|
1442 |
-
# multipliers['noise'] = multipliers.get('noise', 1.0) *
|
|
|
|
|
|
|
|
|
1443 |
|
1444 |
-
# #
|
1445 |
# for key, multiplier in multipliers.items():
|
1446 |
# base_weights[key] *= multiplier
|
1447 |
|
1448 |
# return base_weights
|
1449 |
|
1450 |
# def apply_special_case_adjustments(score):
|
1451 |
-
# """
|
1452 |
-
# #
|
1453 |
# if user_prefs.experience_level == 'beginner':
|
1454 |
-
# if
|
1455 |
-
# breed_info.get('Exercise Needs') == 'VERY HIGH'
|
1456 |
-
#
|
1457 |
-
|
1458 |
-
#
|
|
|
|
|
1459 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1460 |
# if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
|
1461 |
-
# score *= 0.
|
1462 |
-
|
1463 |
-
#
|
1464 |
-
# if (user_prefs.noise_tolerance == 'low' and
|
1465 |
-
# breed_info.get('Breed') in breed_noise_info and
|
1466 |
-
# breed_noise_info[breed_info['Breed']]['noise_level'].lower() == 'high'):
|
1467 |
-
# score *= 0.7
|
1468 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1469 |
# return score
|
1470 |
|
1471 |
# # 評估完美匹配條件
|
@@ -1481,19 +1530,18 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1481 |
# # 計算基礎分數
|
1482 |
# base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
1483 |
|
1484 |
-
# #
|
1485 |
# perfect_bonus = 1.0
|
1486 |
-
# perfect_bonus += 0.
|
1487 |
-
# perfect_bonus += 0.
|
1488 |
-
# perfect_bonus += 0.
|
1489 |
-
#
|
1490 |
-
|
1491 |
-
|
1492 |
# # 品種特性加成
|
1493 |
-
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs) * 1.
|
1494 |
|
1495 |
# # 計算最終分數
|
1496 |
-
# final_score = (base_score * 0.
|
1497 |
|
1498 |
# # 應用特殊情況調整
|
1499 |
# final_score = apply_special_case_adjustments(final_score)
|
@@ -1503,14 +1551,15 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1503 |
|
1504 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1505 |
"""
|
1506 |
-
|
1507 |
-
|
1508 |
-
|
1509 |
-
2. 更動態的權重分配
|
1510 |
-
3. 更嚴格的特殊情況處理
|
1511 |
"""
|
1512 |
def evaluate_perfect_conditions():
|
1513 |
-
"""
|
|
|
|
|
|
|
1514 |
perfect_matches = {
|
1515 |
'size_match': 0,
|
1516 |
'exercise_match': 0,
|
@@ -1518,210 +1567,216 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
1518 |
'living_condition_match': 0
|
1519 |
}
|
1520 |
|
1521 |
-
#
|
1522 |
-
|
1523 |
'apartment': {
|
1524 |
'Small': 1.0,
|
1525 |
'Medium': 0.4,
|
1526 |
-
'Large': 0.
|
1527 |
-
'Giant': 0.
|
1528 |
},
|
1529 |
'house_small': {
|
1530 |
'Small': 0.9,
|
1531 |
'Medium': 1.0,
|
1532 |
-
'Large': 0.
|
1533 |
-
'Giant': 0.
|
1534 |
-
},
|
1535 |
-
'house_large': {
|
1536 |
-
'Small': 0.7,
|
1537 |
-
'Medium': 0.9,
|
1538 |
-
'Large': 1.0,
|
1539 |
-
'Giant': 0.9
|
1540 |
}
|
1541 |
}
|
1542 |
-
perfect_matches['size_match'] = size_living_matrix.get(user_prefs.living_space, {}).get(breed_info['Size'], 0.5)
|
1543 |
|
1544 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1545 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1546 |
exercise_time = user_prefs.exercise_time
|
1547 |
-
exercise_type = user_prefs.exercise_type
|
1548 |
-
|
1549 |
-
# 建立運動時間範圍對照表
|
1550 |
-
exercise_ranges = {
|
1551 |
-
'VERY HIGH': {'ideal': (150, 180), 'acceptable': (120, 200)},
|
1552 |
-
'HIGH': {'ideal': (120, 150), 'acceptable': (90, 180)},
|
1553 |
-
'MODERATE': {'ideal': (60, 120), 'acceptable': (45, 150)},
|
1554 |
-
'LOW': {'ideal': (30, 60), 'acceptable': (20, 90)}
|
1555 |
-
}
|
1556 |
|
1557 |
-
#
|
1558 |
-
|
1559 |
-
|
1560 |
-
|
1561 |
-
|
1562 |
-
|
1563 |
-
|
1564 |
-
|
1565 |
-
|
1566 |
-
# 運動類型匹配評估
|
1567 |
-
exercise_type_matrix = {
|
1568 |
-
'VERY HIGH': {
|
1569 |
-
'light_walks': 0.2,
|
1570 |
-
'moderate_activity': 0.5,
|
1571 |
-
'active_training': 1.0
|
1572 |
-
},
|
1573 |
-
'HIGH': {
|
1574 |
-
'light_walks': 0.3,
|
1575 |
-
'moderate_activity': 0.8,
|
1576 |
-
'active_training': 1.0
|
1577 |
-
},
|
1578 |
-
'MODERATE': {
|
1579 |
-
'light_walks': 0.7,
|
1580 |
-
'moderate_activity': 1.0,
|
1581 |
-
'active_training': 0.8
|
1582 |
-
},
|
1583 |
-
'LOW': {
|
1584 |
-
'light_walks': 1.0,
|
1585 |
-
'moderate_activity': 0.7,
|
1586 |
-
'active_training': 0.4
|
1587 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1588 |
}
|
1589 |
|
1590 |
-
|
1591 |
-
|
|
|
|
|
|
|
|
|
1592 |
|
1593 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1594 |
care_level = breed_info.get('Care Level', 'MODERATE').upper()
|
1595 |
-
|
1596 |
-
|
1597 |
-
|
1598 |
-
|
1599 |
-
|
1600 |
-
}
|
1601 |
-
'MODERATE': {
|
1602 |
-
'beginner': 0.5,
|
1603 |
-
'intermediate': 1.0,
|
1604 |
-
'advanced': 0.9
|
1605 |
-
},
|
1606 |
-
'LOW': {
|
1607 |
-
'beginner': 1.0,
|
1608 |
-
'intermediate': 0.9,
|
1609 |
-
'advanced': 0.8
|
1610 |
-
}
|
1611 |
}
|
1612 |
-
perfect_matches['experience_match'] = experience_matrix.get(care_level, {}).get(user_prefs.experience_level, 0.5)
|
1613 |
|
1614 |
-
|
1615 |
-
|
1616 |
|
1617 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1618 |
if breed_info.get('Exercise Needs', 'MODERATE').upper() in ['HIGH', 'VERY HIGH']:
|
1619 |
-
|
1620 |
-
|
1621 |
-
|
1622 |
-
|
1623 |
-
|
1624 |
-
|
1625 |
-
|
1626 |
-
# 時間可用性評估
|
1627 |
-
time_availability_scores = {
|
1628 |
-
'limited': 0.4,
|
1629 |
-
'moderate': 0.7,
|
1630 |
-
'flexible': 1.0
|
1631 |
-
}
|
1632 |
-
living_factors.append(time_availability_scores.get(user_prefs.time_availability, 0.7))
|
1633 |
|
1634 |
-
perfect_matches['living_condition_match'] =
|
1635 |
|
1636 |
return perfect_matches
|
1637 |
|
1638 |
def calculate_weights():
|
1639 |
-
"""
|
|
|
|
|
|
|
1640 |
base_weights = {
|
1641 |
'space': 0.20,
|
1642 |
'exercise': 0.20,
|
1643 |
'experience': 0.20,
|
1644 |
'grooming': 0.15,
|
1645 |
-
'
|
1646 |
-
'
|
1647 |
}
|
1648 |
|
1649 |
-
|
1650 |
-
|
1651 |
-
|
1652 |
-
if user_prefs.living_space == 'apartment':
|
1653 |
-
multipliers['space'] = 3.0
|
1654 |
-
multipliers['noise'] = 2.5
|
1655 |
-
if breed_info['Size'] in ['Large', 'Giant']:
|
1656 |
-
multipliers['space'] = 4.0
|
1657 |
-
|
1658 |
-
# 運動需求權重調整
|
1659 |
-
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1660 |
-
if exercise_needs == 'VERY HIGH':
|
1661 |
-
if user_prefs.exercise_time < 90:
|
1662 |
-
multipliers['exercise'] = 4.0
|
1663 |
-
elif user_prefs.exercise_time > 150:
|
1664 |
-
multipliers['exercise'] = 3.0
|
1665 |
-
elif user_prefs.exercise_time < 30:
|
1666 |
-
multipliers['exercise'] = 3.5
|
1667 |
|
1668 |
-
|
1669 |
-
|
1670 |
-
|
1671 |
-
|
|
|
1672 |
else:
|
1673 |
-
|
1674 |
|
1675 |
-
|
1676 |
-
|
1677 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1678 |
|
1679 |
-
|
1680 |
-
|
1681 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1682 |
|
|
|
|
|
|
|
|
|
1683 |
# 應用權重調整
|
1684 |
-
|
1685 |
-
|
|
|
1686 |
|
1687 |
-
return
|
1688 |
|
1689 |
def apply_special_case_adjustments(score):
|
1690 |
-
"""
|
1691 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1692 |
if user_prefs.experience_level == 'beginner':
|
1693 |
if breed_info.get('Care Level') == 'HIGH':
|
1694 |
-
if
|
1695 |
-
|
1696 |
else:
|
1697 |
-
|
1698 |
|
1699 |
-
#
|
1700 |
-
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1701 |
-
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
|
1702 |
-
score *= 0.4
|
1703 |
-
elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
1704 |
-
score *= 0.5
|
1705 |
-
|
1706 |
-
# 居住空間極端不匹配
|
1707 |
-
if user_prefs.living_space == 'apartment':
|
1708 |
-
if breed_info['Size'] == 'Giant':
|
1709 |
-
score *= 0.3
|
1710 |
-
elif breed_info['Size'] == 'Large':
|
1711 |
-
score *= 0.5
|
1712 |
-
|
1713 |
-
# 噪音敏感度極端不匹配
|
1714 |
-
if user_prefs.noise_tolerance == 'low':
|
1715 |
-
if breed_info.get('Breed') in breed_noise_info:
|
1716 |
-
if breed_noise_info[breed_info['Breed']]['noise_level'].lower() == 'high':
|
1717 |
-
score *= 0.4
|
1718 |
-
|
1719 |
-
# 時間限制的影響
|
1720 |
if user_prefs.time_availability == 'limited':
|
1721 |
if breed_info.get('Exercise Needs').upper() in ['HIGH', 'VERY HIGH']:
|
1722 |
-
|
1723 |
|
1724 |
-
return score
|
1725 |
|
1726 |
# 評估完美匹配條件
|
1727 |
perfect_conditions = evaluate_perfect_conditions()
|
@@ -1736,20 +1791,18 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
1736 |
# 計算基礎分數
|
1737 |
base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
1738 |
|
1739 |
-
#
|
1740 |
perfect_bonus = 1.0
|
1741 |
perfect_bonus += 0.15 * perfect_conditions['size_match']
|
1742 |
perfect_bonus += 0.15 * perfect_conditions['exercise_match']
|
1743 |
perfect_bonus += 0.15 * perfect_conditions['experience_match']
|
1744 |
perfect_bonus += 0.05 * perfect_conditions['living_condition_match']
|
1745 |
|
1746 |
-
#
|
1747 |
-
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1748 |
|
1749 |
-
#
|
1750 |
final_score = (base_score * 0.8 + breed_bonus * 0.2) * perfect_bonus
|
1751 |
-
|
1752 |
-
# 應用特殊情況調整
|
1753 |
final_score = apply_special_case_adjustments(final_score)
|
1754 |
|
1755 |
return min(1.0, final_score)
|
@@ -1757,7 +1810,6 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
1757 |
|
1758 |
def amplify_score_extreme(score: float) -> float:
|
1759 |
"""
|
1760 |
-
改進的分數轉換函數:實現更高的頂部分數
|
1761 |
- 完美匹配可達到95-99%
|
1762 |
- 優秀匹配在90-95%
|
1763 |
- 良好匹配在85-90%
|
|
|
1294 |
|
1295 |
return min(0.2, adaptability_score)
|
1296 |
|
1297 |
+
|
1298 |
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1299 |
# """
|
1300 |
+
# 優化後的品種相容性評分系統
|
1301 |
+
# 主要改進:
|
1302 |
+
# 1. 更精確的條件匹配度評估
|
1303 |
+
# 2. 更動態的權重分配
|
1304 |
+
# 3. 更嚴格的特殊情況處理
|
1305 |
# """
|
1306 |
# def evaluate_perfect_conditions():
|
1307 |
+
# """評估完美條件匹配度,重點優化不同條件組合的評估邏輯"""
|
1308 |
# perfect_matches = {
|
1309 |
# 'size_match': 0,
|
1310 |
# 'exercise_match': 0,
|
1311 |
# 'experience_match': 0,
|
1312 |
+
# 'living_condition_match': 0
|
1313 |
# }
|
1314 |
|
1315 |
+
# # 體型與居住空間匹配評估
|
1316 |
+
# size_living_matrix = {
|
1317 |
+
# 'apartment': {
|
1318 |
+
# 'Small': 1.0,
|
1319 |
+
# 'Medium': 0.4,
|
1320 |
+
# 'Large': 0.1,
|
1321 |
+
# 'Giant': 0.05
|
1322 |
+
# },
|
1323 |
+
# 'house_small': {
|
1324 |
+
# 'Small': 0.9,
|
1325 |
+
# 'Medium': 1.0,
|
1326 |
+
# 'Large': 0.5,
|
1327 |
+
# 'Giant': 0.3
|
1328 |
+
# },
|
1329 |
+
# 'house_large': {
|
1330 |
+
# 'Small': 0.7,
|
1331 |
+
# 'Medium': 0.9,
|
1332 |
+
# 'Large': 1.0,
|
1333 |
+
# 'Giant': 0.9
|
1334 |
+
# }
|
1335 |
+
# }
|
1336 |
+
# perfect_matches['size_match'] = size_living_matrix.get(user_prefs.living_space, {}).get(breed_info['Size'], 0.5)
|
1337 |
+
|
1338 |
+
# # 運動需求匹配評估
|
1339 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1340 |
# exercise_time = user_prefs.exercise_time
|
1341 |
+
# exercise_type = user_prefs.exercise_type
|
1342 |
|
1343 |
+
# # 建立運動時間範圍對照表
|
1344 |
+
# exercise_ranges = {
|
1345 |
+
# 'VERY HIGH': {'ideal': (150, 180), 'acceptable': (120, 200)},
|
1346 |
+
# 'HIGH': {'ideal': (120, 150), 'acceptable': (90, 180)},
|
1347 |
+
# 'MODERATE': {'ideal': (60, 120), 'acceptable': (45, 150)},
|
1348 |
+
# 'LOW': {'ideal': (30, 60), 'acceptable': (20, 90)}
|
1349 |
+
# }
|
1350 |
+
|
1351 |
+
# # 評估運動時間匹配度
|
1352 |
+
# breed_range = exercise_ranges.get(exercise_needs, exercise_ranges['MODERATE'])
|
1353 |
+
# if breed_range['ideal'][0] <= exercise_time <= breed_range['ideal'][1]:
|
1354 |
+
# time_match = 1.0
|
1355 |
+
# elif breed_range['acceptable'][0] <= exercise_time <= breed_range['acceptable'][1]:
|
1356 |
+
# time_match = 0.7
|
1357 |
+
# else:
|
1358 |
+
# time_match = 0.3
|
1359 |
+
|
1360 |
+
# # 運動類型匹配評估
|
1361 |
+
# exercise_type_matrix = {
|
1362 |
+
# 'VERY HIGH': {
|
1363 |
+
# 'light_walks': 0.2,
|
1364 |
+
# 'moderate_activity': 0.5,
|
1365 |
+
# 'active_training': 1.0
|
1366 |
+
# },
|
1367 |
+
# 'HIGH': {
|
1368 |
+
# 'light_walks': 0.3,
|
1369 |
+
# 'moderate_activity': 0.8,
|
1370 |
+
# 'active_training': 1.0
|
1371 |
+
# },
|
1372 |
+
# 'MODERATE': {
|
1373 |
+
# 'light_walks': 0.7,
|
1374 |
+
# 'moderate_activity': 1.0,
|
1375 |
+
# 'active_training': 0.8
|
1376 |
+
# },
|
1377 |
+
# 'LOW': {
|
1378 |
+
# 'light_walks': 1.0,
|
1379 |
+
# 'moderate_activity': 0.7,
|
1380 |
+
# 'active_training': 0.4
|
1381 |
+
# }
|
1382 |
+
# }
|
1383 |
+
|
1384 |
+
# type_match = exercise_type_matrix.get(exercise_needs, {}).get(exercise_type, 0.5)
|
1385 |
+
# perfect_matches['exercise_match'] = (time_match * 0.7) + (type_match * 0.3)
|
1386 |
+
|
1387 |
+
# # 經驗匹配度評估
|
1388 |
+
# care_level = breed_info.get('Care Level', 'MODERATE').upper()
|
1389 |
+
# experience_matrix = {
|
1390 |
+
# 'HIGH': {
|
1391 |
+
# 'beginner': 0.1,
|
1392 |
+
# 'intermediate': 0.6,
|
1393 |
+
# 'advanced': 1.0
|
1394 |
+
# },
|
1395 |
+
# 'MODERATE': {
|
1396 |
+
# 'beginner': 0.5,
|
1397 |
+
# 'intermediate': 1.0,
|
1398 |
+
# 'advanced': 0.9
|
1399 |
+
# },
|
1400 |
+
# 'LOW': {
|
1401 |
+
# 'beginner': 1.0,
|
1402 |
+
# 'intermediate': 0.9,
|
1403 |
+
# 'advanced': 0.8
|
1404 |
+
# }
|
1405 |
+
# }
|
1406 |
+
# perfect_matches['experience_match'] = experience_matrix.get(care_level, {}).get(user_prefs.experience_level, 0.5)
|
1407 |
+
|
1408 |
+
# # 生活條件整體匹配評估
|
1409 |
+
# living_factors = []
|
1410 |
+
|
1411 |
+
# # 院子可用性評估
|
1412 |
+
# if breed_info.get('Exercise Needs', 'MODERATE').upper() in ['HIGH', 'VERY HIGH']:
|
1413 |
+
# if user_prefs.yard_access == 'no_yard':
|
1414 |
+
# living_factors.append(0.3)
|
1415 |
+
# elif user_prefs.yard_access == 'shared_yard':
|
1416 |
+
# living_factors.append(0.7)
|
1417 |
# else:
|
1418 |
+
# living_factors.append(1.0)
|
1419 |
|
1420 |
+
# # 時間可用性評估
|
1421 |
+
# time_availability_scores = {
|
1422 |
+
# 'limited': 0.4,
|
1423 |
+
# 'moderate': 0.7,
|
1424 |
+
# 'flexible': 1.0
|
1425 |
+
# }
|
1426 |
+
# living_factors.append(time_availability_scores.get(user_prefs.time_availability, 0.7))
|
1427 |
+
|
1428 |
+
# perfect_matches['living_condition_match'] = sum(living_factors) / len(living_factors) if living_factors else 0.5
|
1429 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1430 |
# return perfect_matches
|
1431 |
|
1432 |
# def calculate_weights():
|
1433 |
+
# """計算動態權重,根據使用者條件調整各項評分的重要性"""
|
1434 |
# base_weights = {
|
1435 |
# 'space': 0.20,
|
1436 |
# 'exercise': 0.20,
|
|
|
1440 |
# 'noise': 0.10
|
1441 |
# }
|
1442 |
|
|
|
1443 |
# multipliers = {}
|
1444 |
|
1445 |
+
# # 居住空間權重調整
|
1446 |
+
# if user_prefs.living_space == 'apartment':
|
1447 |
+
# multipliers['space'] = 3.0
|
1448 |
+
# multipliers['noise'] = 2.5
|
1449 |
+
# if breed_info['Size'] in ['Large', 'Giant']:
|
1450 |
+
# multipliers['space'] = 4.0
|
1451 |
+
|
1452 |
+
# # 運動需求權重調整
|
|
|
|
|
|
|
|
|
|
|
1453 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1454 |
# if exercise_needs == 'VERY HIGH':
|
1455 |
# if user_prefs.exercise_time < 90:
|
|
|
1459 |
# elif user_prefs.exercise_time < 30:
|
1460 |
# multipliers['exercise'] = 3.5
|
1461 |
|
1462 |
+
# # 經驗需求權重調整
|
1463 |
+
# if user_prefs.experience_level == 'beginner':
|
1464 |
+
# if breed_info.get('Care Level', 'MODERATE').upper() == 'HIGH':
|
1465 |
+
# multipliers['experience'] = 4.0
|
1466 |
+
# else:
|
1467 |
+
# multipliers['experience'] = 3.0
|
1468 |
+
|
1469 |
# # 噪音敏感度調整
|
1470 |
# if user_prefs.noise_tolerance == 'low':
|
1471 |
+
# multipliers['noise'] = multipliers.get('noise', 1.0) * 3.0
|
1472 |
+
|
1473 |
+
# # 有小孩的情況特別注重經驗需求
|
1474 |
+
# if user_prefs.has_children and user_prefs.children_age == 'toddler':
|
1475 |
+
# multipliers['experience'] = multipliers.get('experience', 1.0) * 2.0
|
1476 |
|
1477 |
+
# # 應用權重調整
|
1478 |
# for key, multiplier in multipliers.items():
|
1479 |
# base_weights[key] *= multiplier
|
1480 |
|
1481 |
# return base_weights
|
1482 |
|
1483 |
# def apply_special_case_adjustments(score):
|
1484 |
+
# """處理特殊情況,給予更嚴格的分數調整"""
|
1485 |
+
# # 極端不匹配情況的嚴格懲罰
|
1486 |
# if user_prefs.experience_level == 'beginner':
|
1487 |
+
# if breed_info.get('Care Level') == 'HIGH':
|
1488 |
+
# if breed_info.get('Exercise Needs') == 'VERY HIGH':
|
1489 |
+
# score *= 0.4
|
1490 |
+
# else:
|
1491 |
+
# score *= 0.6
|
1492 |
+
|
1493 |
+
# # 運動需求極端不匹配
|
1494 |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1495 |
# if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
|
1496 |
+
# score *= 0.4
|
1497 |
+
# elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
1498 |
+
# score *= 0.5
|
|
|
|
|
|
|
|
|
1499 |
|
1500 |
+
# # 居住空間極端不匹配
|
1501 |
+
# if user_prefs.living_space == 'apartment':
|
1502 |
+
# if breed_info['Size'] == 'Giant':
|
1503 |
+
# score *= 0.3
|
1504 |
+
# elif breed_info['Size'] == 'Large':
|
1505 |
+
# score *= 0.5
|
1506 |
+
|
1507 |
+
# # 噪音敏感度極端不匹配
|
1508 |
+
# if user_prefs.noise_tolerance == 'low':
|
1509 |
+
# if breed_info.get('Breed') in breed_noise_info:
|
1510 |
+
# if breed_noise_info[breed_info['Breed']]['noise_level'].lower() == 'high':
|
1511 |
+
# score *= 0.4
|
1512 |
+
|
1513 |
+
# # 時間限制的影響
|
1514 |
+
# if user_prefs.time_availability == 'limited':
|
1515 |
+
# if breed_info.get('Exercise Needs').upper() in ['HIGH', 'VERY HIGH']:
|
1516 |
+
# score *= 0.6
|
1517 |
+
|
1518 |
# return score
|
1519 |
|
1520 |
# # 評估完美匹配條件
|
|
|
1530 |
# # 計算基礎分數
|
1531 |
# base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
1532 |
|
1533 |
+
# # 完美匹配獎勵計算
|
1534 |
# perfect_bonus = 1.0
|
1535 |
+
# perfect_bonus += 0.15 * perfect_conditions['size_match']
|
1536 |
+
# perfect_bonus += 0.15 * perfect_conditions['exercise_match']
|
1537 |
+
# perfect_bonus += 0.15 * perfect_conditions['experience_match']
|
1538 |
+
# perfect_bonus += 0.05 * perfect_conditions['living_condition_match']
|
1539 |
+
|
|
|
1540 |
# # 品種特性加成
|
1541 |
+
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs) * 1.2
|
1542 |
|
1543 |
# # 計算最終分數
|
1544 |
+
# final_score = (base_score * 0.8 + breed_bonus * 0.2) * perfect_bonus
|
1545 |
|
1546 |
# # 應用特殊情況調整
|
1547 |
# final_score = apply_special_case_adjustments(final_score)
|
|
|
1551 |
|
1552 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1553 |
"""
|
1554 |
+
1. 條件間的相互影響
|
1555 |
+
2. 動態權重調整
|
1556 |
+
3. 更自然的評分機制
|
|
|
|
|
1557 |
"""
|
1558 |
def evaluate_perfect_conditions():
|
1559 |
+
"""
|
1560 |
+
評估條件匹配度,考慮條件間的相互關係。
|
1561 |
+
返回的不只是單純的匹配分數,而是綜合了各種條件互相影響後的結果。
|
1562 |
+
"""
|
1563 |
perfect_matches = {
|
1564 |
'size_match': 0,
|
1565 |
'exercise_match': 0,
|
|
|
1567 |
'living_condition_match': 0
|
1568 |
}
|
1569 |
|
1570 |
+
# 居住空間與體型匹配評估
|
1571 |
+
size_living_evaluation = {
|
1572 |
'apartment': {
|
1573 |
'Small': 1.0,
|
1574 |
'Medium': 0.4,
|
1575 |
+
'Large': 0.2,
|
1576 |
+
'Giant': 0.1
|
1577 |
},
|
1578 |
'house_small': {
|
1579 |
'Small': 0.9,
|
1580 |
'Medium': 1.0,
|
1581 |
+
'Large': 0.6,
|
1582 |
+
'Giant': 0.4
|
|
|
|
|
|
|
|
|
|
|
|
|
1583 |
}
|
1584 |
}
|
|
|
1585 |
|
1586 |
+
# 對於大房子,我們不使用固定的匹配矩陣,而是根據其他條件動態評估
|
1587 |
+
if user_prefs.living_space == 'house_large':
|
1588 |
+
# 大房子的評估更關注其他因素而不是體型限制
|
1589 |
+
perfect_matches['size_match'] = 0.8 # 基礎分數較高
|
1590 |
+
if breed_info['Size'] in ['Medium', 'Large']:
|
1591 |
+
perfect_matches['size_match'] = 0.9
|
1592 |
+
else:
|
1593 |
+
perfect_matches['size_match'] = size_living_evaluation.get(
|
1594 |
+
user_prefs.living_space, {}
|
1595 |
+
).get(breed_info['Size'], 0.5)
|
1596 |
+
|
1597 |
+
# 運動需求匹配評估,考慮多個相關因素
|
1598 |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1599 |
exercise_time = user_prefs.exercise_time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1600 |
|
1601 |
+
# 建立運動時間的基礎評估
|
1602 |
+
def evaluate_exercise_match():
|
1603 |
+
# 根據運動需求級別動態計算理想範圍
|
1604 |
+
exercise_ranges = {
|
1605 |
+
'VERY HIGH': (120, 180),
|
1606 |
+
'HIGH': (90, 150),
|
1607 |
+
'MODERATE': (60, 120),
|
1608 |
+
'LOW': (30, 90)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1609 |
}
|
1610 |
+
|
1611 |
+
# 獲取該品種的理想運動範圍
|
1612 |
+
ideal_range = exercise_ranges.get(exercise_needs, (60, 120))
|
1613 |
+
min_time, max_time = ideal_range
|
1614 |
+
|
1615 |
+
# 動態計算匹配度,避免硬性分界
|
1616 |
+
if min_time <= exercise_time <= max_time:
|
1617 |
+
base_score = 1.0
|
1618 |
+
else:
|
1619 |
+
# 計算與理想範圍的偏差程度
|
1620 |
+
if exercise_time < min_time:
|
1621 |
+
deviation = (min_time - exercise_time) / min_time
|
1622 |
+
else:
|
1623 |
+
deviation = (exercise_time - max_time) / max_time
|
1624 |
+
base_score = max(0.3, 1 - deviation)
|
1625 |
+
|
1626 |
+
return base_score
|
1627 |
+
|
1628 |
+
# 結合運動時間與其他條件
|
1629 |
+
exercise_base_score = evaluate_exercise_match()
|
1630 |
+
|
1631 |
+
# 考慮時間可用性的影響
|
1632 |
+
time_availability_impact = {
|
1633 |
+
'limited': 0.7,
|
1634 |
+
'moderate': 0.9,
|
1635 |
+
'flexible': 1.0
|
1636 |
}
|
1637 |
|
1638 |
+
# 考慮使用者經驗對運動安排的影響
|
1639 |
+
experience_impact = {
|
1640 |
+
'beginner': 0.8,
|
1641 |
+
'intermediate': 0.9,
|
1642 |
+
'advanced': 1.0
|
1643 |
+
}
|
1644 |
|
1645 |
+
# 計算最終運動匹配度
|
1646 |
+
exercise_modifiers = (
|
1647 |
+
time_availability_impact.get(user_prefs.time_availability, 0.9) *
|
1648 |
+
experience_impact.get(user_prefs.experience_level, 0.9)
|
1649 |
+
)
|
1650 |
+
|
1651 |
+
perfect_matches['exercise_match'] = exercise_base_score * exercise_modifiers
|
1652 |
+
|
1653 |
+
# 經驗匹配評估,考慮品種難度和其他因素
|
1654 |
care_level = breed_info.get('Care Level', 'MODERATE').upper()
|
1655 |
+
|
1656 |
+
# 基礎經驗匹配評估
|
1657 |
+
experience_base = {
|
1658 |
+
'HIGH': {'beginner': 0.3, 'intermediate': 0.7, 'advanced': 1.0},
|
1659 |
+
'MODERATE': {'beginner': 0.6, 'intermediate': 0.9, 'advanced': 1.0},
|
1660 |
+
'LOW': {'beginner': 0.9, 'intermediate': 1.0, 'advanced': 0.9}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1661 |
}
|
|
|
1662 |
|
1663 |
+
experience_score = experience_base.get(care_level, experience_base['MODERATE']
|
1664 |
+
).get(user_prefs.experience_level, 0.7)
|
1665 |
|
1666 |
+
# 調整經驗分數基於其他因素
|
1667 |
+
if user_prefs.has_children:
|
1668 |
+
experience_score *= 0.8 if user_prefs.experience_level == 'beginner' else 0.9
|
1669 |
+
|
1670 |
+
perfect_matches['experience_match'] = experience_score
|
1671 |
+
|
1672 |
+
# 生活條件整體評估
|
1673 |
+
living_score = 1.0
|
1674 |
+
|
1675 |
+
# 院子影響評估
|
1676 |
if breed_info.get('Exercise Needs', 'MODERATE').upper() in ['HIGH', 'VERY HIGH']:
|
1677 |
+
yard_impacts = {
|
1678 |
+
'no_yard': 0.6,
|
1679 |
+
'shared_yard': 0.8,
|
1680 |
+
'private_yard': 1.0
|
1681 |
+
}
|
1682 |
+
living_score *= yard_impacts.get(user_prefs.yard_access, 0.8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1683 |
|
1684 |
+
perfect_matches['living_condition_match'] = living_score
|
1685 |
|
1686 |
return perfect_matches
|
1687 |
|
1688 |
def calculate_weights():
|
1689 |
+
"""
|
1690 |
+
計算動態權重,根據條件的極端程度自動調整各項評分的重要性
|
1691 |
+
"""
|
1692 |
+
# 基礎權重設定
|
1693 |
base_weights = {
|
1694 |
'space': 0.20,
|
1695 |
'exercise': 0.20,
|
1696 |
'experience': 0.20,
|
1697 |
'grooming': 0.15,
|
1698 |
+
'noise': 0.15,
|
1699 |
+
'health': 0.10
|
1700 |
}
|
1701 |
|
1702 |
+
# 計算條件的極端程度
|
1703 |
+
def calculate_extremity():
|
1704 |
+
extremities = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1705 |
|
1706 |
+
# 運動時間極端度
|
1707 |
+
if user_prefs.exercise_time < 30:
|
1708 |
+
extremities['exercise'] = ('low', 0.8)
|
1709 |
+
elif user_prefs.exercise_time > 150:
|
1710 |
+
extremities['exercise'] = ('high', 0.8)
|
1711 |
else:
|
1712 |
+
extremities['exercise'] = ('normal', 0.3)
|
1713 |
|
1714 |
+
# 居住空間極端度
|
1715 |
+
if user_prefs.living_space == 'apartment':
|
1716 |
+
extremities['space'] = ('restrictive', 0.9)
|
1717 |
+
elif user_prefs.living_space == 'house_large':
|
1718 |
+
extremities['space'] = ('relaxed', 0.2)
|
1719 |
+
else:
|
1720 |
+
extremities['space'] = ('normal', 0.5)
|
1721 |
+
|
1722 |
+
return extremities
|
1723 |
|
1724 |
+
extremities = calculate_extremity()
|
1725 |
+
|
1726 |
+
# 根據極端程度調整權重
|
1727 |
+
weight_adjustments = {}
|
1728 |
+
|
1729 |
+
# 空間限制的權重調整
|
1730 |
+
if extremities['space'][0] == 'restrictive':
|
1731 |
+
weight_adjustments['space'] = 3.0
|
1732 |
+
weight_adjustments['noise'] = 2.0
|
1733 |
+
elif extremities['space'][0] == 'relaxed':
|
1734 |
+
weight_adjustments['space'] = 0.5
|
1735 |
+
weight_adjustments['exercise'] = 1.5
|
1736 |
+
|
1737 |
+
# 運動需求的權重調整
|
1738 |
+
if extremities['exercise'][0] in ['low', 'high']:
|
1739 |
+
weight_adjustments['exercise'] = 2.5
|
1740 |
|
1741 |
+
# 經驗需求的權重調整
|
1742 |
+
if user_prefs.experience_level == 'beginner':
|
1743 |
+
weight_adjustments['experience'] = 2.0
|
1744 |
+
|
1745 |
# 應用權重調整
|
1746 |
+
final_weights = base_weights.copy()
|
1747 |
+
for key, adjustment in weight_adjustments.items():
|
1748 |
+
final_weights[key] *= adjustment
|
1749 |
|
1750 |
+
return final_weights
|
1751 |
|
1752 |
def apply_special_case_adjustments(score):
|
1753 |
+
"""
|
1754 |
+
處理特殊情況,考慮條件組合產生的效果
|
1755 |
+
"""
|
1756 |
+
# 評估條件組合的嚴重程度
|
1757 |
+
severity = 1.0
|
1758 |
+
|
1759 |
+
# 空間與運動組合評估
|
1760 |
+
if user_prefs.living_space == 'apartment':
|
1761 |
+
if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'VERY HIGH':
|
1762 |
+
severity *= 0.6
|
1763 |
+
elif breed_info['Size'] in ['Large', 'Giant']:
|
1764 |
+
severity *= 0.7
|
1765 |
+
|
1766 |
+
# 經驗與品種難度組合評估
|
1767 |
if user_prefs.experience_level == 'beginner':
|
1768 |
if breed_info.get('Care Level') == 'HIGH':
|
1769 |
+
if user_prefs.has_children:
|
1770 |
+
severity *= 0.6
|
1771 |
else:
|
1772 |
+
severity *= 0.7
|
1773 |
|
1774 |
+
# 時間限制與需求組合評估
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1775 |
if user_prefs.time_availability == 'limited':
|
1776 |
if breed_info.get('Exercise Needs').upper() in ['HIGH', 'VERY HIGH']:
|
1777 |
+
severity *= 0.8
|
1778 |
|
1779 |
+
return score * severity
|
1780 |
|
1781 |
# 評估完美匹配條件
|
1782 |
perfect_conditions = evaluate_perfect_conditions()
|
|
|
1791 |
# 計算基礎分數
|
1792 |
base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
1793 |
|
1794 |
+
# 完美匹配獎勵
|
1795 |
perfect_bonus = 1.0
|
1796 |
perfect_bonus += 0.15 * perfect_conditions['size_match']
|
1797 |
perfect_bonus += 0.15 * perfect_conditions['exercise_match']
|
1798 |
perfect_bonus += 0.15 * perfect_conditions['experience_match']
|
1799 |
perfect_bonus += 0.05 * perfect_conditions['living_condition_match']
|
1800 |
|
1801 |
+
# 品種特性加成(使用原有的 calculate_breed_bonus 函數)
|
1802 |
+
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1803 |
|
1804 |
+
# 計算最終分數並應用特殊情況調整
|
1805 |
final_score = (base_score * 0.8 + breed_bonus * 0.2) * perfect_bonus
|
|
|
|
|
1806 |
final_score = apply_special_case_adjustments(final_score)
|
1807 |
|
1808 |
return min(1.0, final_score)
|
|
|
1810 |
|
1811 |
def amplify_score_extreme(score: float) -> float:
|
1812 |
"""
|
|
|
1813 |
- 完美匹配可達到95-99%
|
1814 |
- 優秀匹配在90-95%
|
1815 |
- 良好匹配在85-90%
|