Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -167,22 +167,63 @@ async def predict_single_dog(image):
|
|
167 |
return top1_prob, topk_breeds, topk_probs_percent
|
168 |
|
169 |
|
170 |
-
async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
172 |
dogs = []
|
173 |
boxes = []
|
|
|
|
|
174 |
for box in results.boxes:
|
175 |
if box.cls == 16: # COCO dataset class for dog is 16
|
176 |
xyxy = box.xyxy[0].tolist()
|
177 |
confidence = box.conf.item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
boxes.append((xyxy, confidence))
|
179 |
|
180 |
if not boxes:
|
181 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
182 |
else:
|
|
|
183 |
nms_boxes = non_max_suppression(boxes, iou_threshold)
|
184 |
|
185 |
-
|
|
|
|
|
|
|
186 |
x1, y1, x2, y2 = box
|
187 |
w, h = x2 - x1, y2 - y1
|
188 |
x1 = max(0, x1 - w * 0.05)
|
@@ -194,6 +235,30 @@ async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
|
|
194 |
|
195 |
return dogs
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
|
199 |
def non_max_suppression(boxes, iou_threshold):
|
|
|
167 |
return top1_prob, topk_breeds, topk_probs_percent
|
168 |
|
169 |
|
170 |
+
# async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
|
171 |
+
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
172 |
+
# dogs = []
|
173 |
+
# boxes = []
|
174 |
+
# for box in results.boxes:
|
175 |
+
# if box.cls == 16: # COCO dataset class for dog is 16
|
176 |
+
# xyxy = box.xyxy[0].tolist()
|
177 |
+
# confidence = box.conf.item()
|
178 |
+
# boxes.append((xyxy, confidence))
|
179 |
+
|
180 |
+
# if not boxes:
|
181 |
+
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
182 |
+
# else:
|
183 |
+
# nms_boxes = non_max_suppression(boxes, iou_threshold)
|
184 |
+
|
185 |
+
# for box, confidence in nms_boxes:
|
186 |
+
# x1, y1, x2, y2 = box
|
187 |
+
# w, h = x2 - x1, y2 - y1
|
188 |
+
# x1 = max(0, x1 - w * 0.05)
|
189 |
+
# y1 = max(0, y1 - h * 0.05)
|
190 |
+
# x2 = min(image.width, x2 + w * 0.05)
|
191 |
+
# y2 = min(image.height, y2 + h * 0.05)
|
192 |
+
# cropped_image = image.crop((x1, y1, x2, y2))
|
193 |
+
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
194 |
+
|
195 |
+
# return dogs
|
196 |
+
|
197 |
+
async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55, min_area_ratio=0.01, overlap_threshold=0.8):
|
198 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
199 |
dogs = []
|
200 |
boxes = []
|
201 |
+
image_area = image.width * image.height
|
202 |
+
|
203 |
for box in results.boxes:
|
204 |
if box.cls == 16: # COCO dataset class for dog is 16
|
205 |
xyxy = box.xyxy[0].tolist()
|
206 |
confidence = box.conf.item()
|
207 |
+
|
208 |
+
# 計算檢測框面積
|
209 |
+
box_area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
210 |
+
|
211 |
+
# 如果檢測框面積小於圖片面積的一定比例,則忽略
|
212 |
+
if box_area / image_area < min_area_ratio:
|
213 |
+
continue
|
214 |
+
|
215 |
boxes.append((xyxy, confidence))
|
216 |
|
217 |
if not boxes:
|
218 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
219 |
else:
|
220 |
+
# 使用非最大抑制
|
221 |
nms_boxes = non_max_suppression(boxes, iou_threshold)
|
222 |
|
223 |
+
# 進一步合併重疊嚴重的框
|
224 |
+
merged_boxes = merge_overlapping_boxes(nms_boxes, overlap_threshold)
|
225 |
+
|
226 |
+
for box, confidence in merged_boxes:
|
227 |
x1, y1, x2, y2 = box
|
228 |
w, h = x2 - x1, y2 - y1
|
229 |
x1 = max(0, x1 - w * 0.05)
|
|
|
235 |
|
236 |
return dogs
|
237 |
|
238 |
+
def merge_overlapping_boxes(boxes, overlap_threshold):
|
239 |
+
merged = []
|
240 |
+
while boxes:
|
241 |
+
base_box = boxes.pop(0)
|
242 |
+
i = 0
|
243 |
+
while i < len(boxes):
|
244 |
+
if calculate_iou(base_box[0], boxes[i][0]) > overlap_threshold:
|
245 |
+
# 合併框,取較大的置信度
|
246 |
+
merged_box = merge_boxes(base_box[0], boxes[i][0])
|
247 |
+
merged_conf = max(base_box[1], boxes[i][1])
|
248 |
+
base_box = (merged_box, merged_conf)
|
249 |
+
boxes.pop(i)
|
250 |
+
else:
|
251 |
+
i += 1
|
252 |
+
merged.append(base_box)
|
253 |
+
return merged
|
254 |
+
|
255 |
+
def merge_boxes(box1, box2):
|
256 |
+
x1 = min(box1[0], box2[0])
|
257 |
+
y1 = min(box1[1], box2[1])
|
258 |
+
x2 = max(box1[2], box2[2])
|
259 |
+
y2 = max(box1[3], box2[3])
|
260 |
+
return [x1, y1, x2, y2]
|
261 |
+
|
262 |
|
263 |
|
264 |
def non_max_suppression(boxes, iou_threshold):
|