Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -251,17 +251,17 @@ def get_akc_breeds_link():
|
|
251 |
# iface.launch()
|
252 |
|
253 |
def format_description(description, breed):
|
254 |
-
# 分別將不同的屬性分開來顯示,保持結果的可讀性
|
255 |
if isinstance(description, dict):
|
256 |
-
formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
257 |
else:
|
258 |
formatted_description = description
|
259 |
|
260 |
formatted_description = f"""
|
261 |
**Breed**: {breed}
|
|
|
262 |
{formatted_description}
|
263 |
|
264 |
-
**Want to learn more about dog breeds?**
|
265 |
[Visit the AKC dog breeds page]({get_akc_breeds_link()}) and search for {breed} to find detailed information.
|
266 |
|
267 |
*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page.
|
@@ -271,9 +271,7 @@ Please refer to the AKC's terms of use and privacy policy.*
|
|
271 |
"""
|
272 |
return formatted_description
|
273 |
|
274 |
-
|
275 |
def predict_single_dog(image):
|
276 |
-
# 直接使用模型進行預測,無需通過 YOLO
|
277 |
image_tensor = preprocess_image(image)
|
278 |
with torch.no_grad():
|
279 |
output = model(image_tensor)
|
@@ -285,21 +283,18 @@ def predict_single_dog(image):
|
|
285 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
286 |
return top1_prob, topk_breeds, topk_probs_percent
|
287 |
|
288 |
-
|
289 |
def detect_multiple_dogs(image):
|
290 |
-
# 使用 YOLO 檢測多隻狗
|
291 |
results = model_yolo(image)
|
292 |
dogs = []
|
293 |
for result in results:
|
294 |
for box in result.boxes:
|
295 |
-
if box.cls == 16: # COCO
|
296 |
xyxy = box.xyxy[0].tolist()
|
297 |
confidence = box.conf.item()
|
298 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
299 |
dogs.append((cropped_image, confidence, xyxy))
|
300 |
return dogs
|
301 |
|
302 |
-
|
303 |
def predict(image):
|
304 |
if image is None:
|
305 |
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
@@ -308,28 +303,34 @@ def predict(image):
|
|
308 |
if isinstance(image, np.ndarray):
|
309 |
image = Image.fromarray(image)
|
310 |
|
311 |
-
#
|
|
|
|
|
|
|
312 |
dogs = detect_multiple_dogs(image)
|
313 |
-
|
314 |
-
if len(dogs)
|
315 |
-
# 沒有狗或 YOLO 未檢測到狗,使用單狗直接分類
|
316 |
-
top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(image)
|
317 |
-
if top1_prob < 0.2:
|
318 |
-
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
319 |
breed = topk_breeds[0]
|
320 |
description = get_dog_description(breed)
|
321 |
formatted_description = format_description(description, breed)
|
322 |
-
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
breed = topk_breeds[0]
|
328 |
-
description = get_dog_description(breed)
|
329 |
-
formatted_description = format_description(description, breed)
|
330 |
-
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
331 |
|
332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
explanations = []
|
334 |
visible_buttons = []
|
335 |
annotated_image = image.copy()
|
@@ -348,6 +349,7 @@ def predict(image):
|
|
348 |
elif 0.2 <= top1_prob < 0.5:
|
349 |
explanation = f"""
|
350 |
Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds:
|
|
|
351 |
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
352 |
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
353 |
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
@@ -358,51 +360,27 @@ Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds
|
|
358 |
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
359 |
|
360 |
final_explanation = "\n\n".join(explanations)
|
361 |
-
return final_explanation, annotated_image, gr.update(visible=len(visible_buttons) >= 1, value=visible_buttons[0] if visible_buttons else ""), gr.update(visible=
|
362 |
|
363 |
except Exception as e:
|
364 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
365 |
|
366 |
-
|
367 |
def show_details(breed):
|
368 |
breed_name = breed.split("More about ")[-1]
|
369 |
description = get_dog_description(breed_name)
|
370 |
return format_description(description, breed_name)
|
371 |
|
372 |
-
|
373 |
with gr.Blocks(css="""
|
374 |
-
.container {
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
border-radius: 15px;
|
380 |
-
box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
|
381 |
-
}
|
382 |
-
.gr-form { display: flex; flex-direction: column; align-items: center; }
|
383 |
-
.gr-box { width: 100%; max-width: 500px; }
|
384 |
-
.output-markdown, .output-image {
|
385 |
-
margin-top: 20px;
|
386 |
-
padding: 15px;
|
387 |
-
background-color: #f5f5f5;
|
388 |
-
border-radius: 10px;
|
389 |
-
}
|
390 |
-
.examples {
|
391 |
-
display: flex;
|
392 |
-
justify-content: center;
|
393 |
-
flex-wrap: wrap;
|
394 |
-
gap: 10px;
|
395 |
-
margin-top: 20px;
|
396 |
-
}
|
397 |
-
.examples img {
|
398 |
-
width: 100px;
|
399 |
-
height: 100px;
|
400 |
-
object-fit: cover;
|
401 |
-
}
|
402 |
""") as iface:
|
403 |
|
404 |
-
gr.HTML("<h1 style='
|
405 |
-
gr.HTML("<p style='
|
406 |
|
407 |
with gr.Row():
|
408 |
input_image = gr.Image(label="Upload a dog image", type="pil")
|
@@ -426,7 +404,7 @@ with gr.Blocks(css="""
|
|
426 |
inputs=input_image
|
427 |
)
|
428 |
|
429 |
-
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%
|
430 |
|
431 |
if __name__ == "__main__":
|
432 |
iface.launch()
|
|
|
251 |
# iface.launch()
|
252 |
|
253 |
def format_description(description, breed):
|
|
|
254 |
if isinstance(description, dict):
|
255 |
+
formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
256 |
else:
|
257 |
formatted_description = description
|
258 |
|
259 |
formatted_description = f"""
|
260 |
**Breed**: {breed}
|
261 |
+
|
262 |
{formatted_description}
|
263 |
|
264 |
+
**Want to learn more about dog breeds?**
|
265 |
[Visit the AKC dog breeds page]({get_akc_breeds_link()}) and search for {breed} to find detailed information.
|
266 |
|
267 |
*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page.
|
|
|
271 |
"""
|
272 |
return formatted_description
|
273 |
|
|
|
274 |
def predict_single_dog(image):
|
|
|
275 |
image_tensor = preprocess_image(image)
|
276 |
with torch.no_grad():
|
277 |
output = model(image_tensor)
|
|
|
283 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
284 |
return top1_prob, topk_breeds, topk_probs_percent
|
285 |
|
|
|
286 |
def detect_multiple_dogs(image):
|
|
|
287 |
results = model_yolo(image)
|
288 |
dogs = []
|
289 |
for result in results:
|
290 |
for box in result.boxes:
|
291 |
+
if box.cls == 16: # COCO dataset class for dog is 16
|
292 |
xyxy = box.xyxy[0].tolist()
|
293 |
confidence = box.conf.item()
|
294 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
295 |
dogs.append((cropped_image, confidence, xyxy))
|
296 |
return dogs
|
297 |
|
|
|
298 |
def predict(image):
|
299 |
if image is None:
|
300 |
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
303 |
if isinstance(image, np.ndarray):
|
304 |
image = Image.fromarray(image)
|
305 |
|
306 |
+
# Always start with single dog prediction
|
307 |
+
top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(image)
|
308 |
+
|
309 |
+
# Check if we need to use YOLO for multiple dogs
|
310 |
dogs = detect_multiple_dogs(image)
|
311 |
+
|
312 |
+
if len(dogs) <= 1: # Single dog or no dog detected
|
|
|
|
|
|
|
|
|
313 |
breed = topk_breeds[0]
|
314 |
description = get_dog_description(breed)
|
315 |
formatted_description = format_description(description, breed)
|
316 |
+
|
317 |
+
if top1_prob >= 0.5:
|
318 |
+
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
319 |
+
elif 0.2 <= top1_prob < 0.5:
|
320 |
+
explanation = f"""
|
321 |
+
Detected with moderate confidence. Here are the top 3 possible breeds:
|
322 |
|
323 |
+
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
324 |
+
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
325 |
+
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
|
|
|
|
|
|
|
|
326 |
|
327 |
+
Click on a button below to view more information about each breed.
|
328 |
+
"""
|
329 |
+
return explanation, image, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")
|
330 |
+
else:
|
331 |
+
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
332 |
+
|
333 |
+
# Multiple dogs detected, process each dog
|
334 |
explanations = []
|
335 |
visible_buttons = []
|
336 |
annotated_image = image.copy()
|
|
|
349 |
elif 0.2 <= top1_prob < 0.5:
|
350 |
explanation = f"""
|
351 |
Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds:
|
352 |
+
|
353 |
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
354 |
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
355 |
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
|
|
360 |
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
361 |
|
362 |
final_explanation = "\n\n".join(explanations)
|
363 |
+
return final_explanation, annotated_image, gr.update(visible=len(visible_buttons) >= 1, value=visible_buttons[0] if visible_buttons else ""), gr.update(visible=True, value=visible_buttons[1] if len(visible_buttons) >= 2 else ""), gr.update(visible=True, value=visible_buttons[2] if len(visible_buttons) >= 3 else "")
|
364 |
|
365 |
except Exception as e:
|
366 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
367 |
|
|
|
368 |
def show_details(breed):
|
369 |
breed_name = breed.split("More about ")[-1]
|
370 |
description = get_dog_description(breed_name)
|
371 |
return format_description(description, breed_name)
|
372 |
|
373 |
+
# Gradio interface setup
|
374 |
with gr.Blocks(css="""
|
375 |
+
.container { max-width: 900px; margin: auto; padding: 20px; }
|
376 |
+
.gr-box { border-radius: 15px; }
|
377 |
+
.output-markdown { margin-top: 20px; padding: 15px; background-color: #f5f5f5; border-radius: 10px; }
|
378 |
+
.examples { display: flex; justify-content: center; flex-wrap: wrap; gap: 10px; margin-top: 20px; }
|
379 |
+
.examples img { width: 100px; height: 100px; object-fit: cover; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
""") as iface:
|
381 |
|
382 |
+
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
383 |
+
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
384 |
|
385 |
with gr.Row():
|
386 |
input_image = gr.Image(label="Upload a dog image", type="pil")
|
|
|
404 |
inputs=input_image
|
405 |
)
|
406 |
|
407 |
+
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed_Classifier">Dog Breed Classifier</a>')
|
408 |
|
409 |
if __name__ == "__main__":
|
410 |
iface.launch()
|