Spaces:
Running
Running
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +1202 -744
scoring_calculation_system.py
CHANGED
@@ -5,28 +5,67 @@ import traceback
|
|
5 |
import math
|
6 |
import random
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
@dataclass
|
9 |
class UserPreferences:
|
10 |
-
|
11 |
-
|
12 |
-
living_space: str
|
13 |
-
yard_access: str
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
has_children: bool
|
20 |
-
children_age: str
|
21 |
-
noise_tolerance: str # "low", "medium", "high"
|
22 |
-
space_for_play: bool
|
23 |
other_pets: bool
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def __post_init__(self):
|
29 |
-
"""
|
30 |
if self.barking_acceptance is None:
|
31 |
self.barking_acceptance = self.noise_tolerance
|
32 |
|
@@ -157,242 +196,7 @@ def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> fl
|
|
157 |
bonus += min(0.15, adaptability_bonus)
|
158 |
|
159 |
return min(0.5, max(-0.25, bonus))
|
160 |
-
|
161 |
-
|
162 |
-
# @staticmethod
|
163 |
-
# def calculate_breed_bonus(breed_info: dict, user_prefs: UserPreferences) -> float:
|
164 |
-
# """
|
165 |
-
# 計算品種的額外加分,評估品種的特殊特徵對使用者需求的適配性。
|
166 |
-
|
167 |
-
# 這個函數考慮四個主要面向:
|
168 |
-
# 1. 壽命評估:考慮飼養的長期承諾
|
169 |
-
# 2. 性格特徵評估:評估品種性格與使用者需求的匹配度
|
170 |
-
# 3. 環境適應性:評估品種在特定生活環境中的表現
|
171 |
-
# 4. 家庭相容性:特別關注品種與家庭成員的互動
|
172 |
-
# """
|
173 |
-
# bonus = 0.0
|
174 |
-
# temperament = breed_info.get('Temperament', '').lower()
|
175 |
-
# description = breed_info.get('Description', '').lower()
|
176 |
-
|
177 |
-
# # 壽命評估 - 重新設計以反映更實際的考量
|
178 |
-
# try:
|
179 |
-
# lifespan = breed_info.get('Lifespan', '10-12 years')
|
180 |
-
# years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
|
181 |
-
# avg_years = float(years[0])
|
182 |
-
|
183 |
-
# # 根據壽命長短給予不同程度的獎勵或懲罰
|
184 |
-
# if avg_years < 8:
|
185 |
-
# bonus -= 0.08 # 短壽命可能帶來情感負擔
|
186 |
-
# elif avg_years < 10:
|
187 |
-
# bonus -= 0.04 # 稍短壽命輕微降低評分
|
188 |
-
# elif avg_years > 13:
|
189 |
-
# bonus += 0.06 # 長壽命適度加分
|
190 |
-
# elif avg_years > 15:
|
191 |
-
# bonus += 0.08 # 特別長壽的品種獲得更多加分
|
192 |
-
# except:
|
193 |
-
# pass
|
194 |
-
|
195 |
-
# # 性格特徵評估 - 擴充並細化評分標準
|
196 |
-
# positive_traits = {
|
197 |
-
# 'friendly': 0.08, # 提高友善性的重要性
|
198 |
-
# 'gentle': 0.08, # 溫和性格更受歡迎
|
199 |
-
# 'patient': 0.07, # 耐心是重要特質
|
200 |
-
# 'intelligent': 0.06, # 聰明但不過分重要
|
201 |
-
# 'adaptable': 0.06, # 適應性佳的特質
|
202 |
-
# 'affectionate': 0.06, # 親密性很重要
|
203 |
-
# 'easy-going': 0.05, # 容易相處的性格
|
204 |
-
# 'calm': 0.05 # 冷靜的特質
|
205 |
-
# }
|
206 |
-
|
207 |
-
# negative_traits = {
|
208 |
-
# 'aggressive': -0.15, # 嚴重懲罰攻擊性
|
209 |
-
# 'stubborn': -0.10, # 固執性格不易處理
|
210 |
-
# 'dominant': -0.10, # 支配性可能造成問題
|
211 |
-
# 'aloof': -0.08, # 冷漠性格影響互動
|
212 |
-
# 'nervous': -0.08, # 緊張性格需要更多關注
|
213 |
-
# 'protective': -0.06 # 過度保護可能有風險
|
214 |
-
# }
|
215 |
-
|
216 |
-
# # 性格評分計算 - 加入累積效應
|
217 |
-
# personality_score = 0
|
218 |
-
# positive_count = 0
|
219 |
-
# negative_count = 0
|
220 |
-
|
221 |
-
# for trait, value in positive_traits.items():
|
222 |
-
# if trait in temperament:
|
223 |
-
# personality_score += value
|
224 |
-
# positive_count += 1
|
225 |
-
|
226 |
-
# for trait, value in negative_traits.items():
|
227 |
-
# if trait in temperament:
|
228 |
-
# personality_score += value
|
229 |
-
# negative_count += 1
|
230 |
|
231 |
-
# # 多重特徵的累積效應
|
232 |
-
# if positive_count > 2:
|
233 |
-
# personality_score *= (1 + (positive_count - 2) * 0.1)
|
234 |
-
# if negative_count > 1:
|
235 |
-
# personality_score *= (1 - (negative_count - 1) * 0.15)
|
236 |
-
|
237 |
-
# bonus += max(-0.25, min(0.25, personality_score))
|
238 |
-
|
239 |
-
# # 適應性評估 - 根據具體環境給予更細緻的評分
|
240 |
-
# adaptability_bonus = 0.0
|
241 |
-
# if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
|
242 |
-
# adaptability_bonus += 0.08 # 小型犬更適合公寓
|
243 |
-
|
244 |
-
# # 環境適應性評估
|
245 |
-
# if 'adaptable' in temperament or 'versatile' in temperament:
|
246 |
-
# if user_prefs.living_space == "apartment":
|
247 |
-
# adaptability_bonus += 0.10 # 適應性在公寓環境更重要
|
248 |
-
# else:
|
249 |
-
# adaptability_bonus += 0.05 # 其他環境仍有加分
|
250 |
-
|
251 |
-
# # 氣候適應性
|
252 |
-
# description = breed_info.get('Description', '').lower()
|
253 |
-
# climate = user_prefs.climate
|
254 |
-
# if climate == 'hot':
|
255 |
-
# if 'heat tolerant' in description or 'warm climate' in description:
|
256 |
-
# adaptability_bonus += 0.08
|
257 |
-
# elif 'thick coat' in description or 'cold climate' in description:
|
258 |
-
# adaptability_bonus -= 0.10
|
259 |
-
# elif climate == 'cold':
|
260 |
-
# if 'thick coat' in description or 'cold climate' in description:
|
261 |
-
# adaptability_bonus += 0.08
|
262 |
-
# elif 'heat tolerant' in description or 'short coat' in description:
|
263 |
-
# adaptability_bonus -= 0.10
|
264 |
-
|
265 |
-
# bonus += min(0.15, adaptability_bonus)
|
266 |
-
|
267 |
-
# # 家庭相容性評估 - 特別關注有孩童的家庭
|
268 |
-
# if user_prefs.has_children:
|
269 |
-
# family_traits = {
|
270 |
-
# 'good with children': 0.12, # 提高與孩童相處的重要性
|
271 |
-
# 'patient': 0.10,
|
272 |
-
# 'gentle': 0.10,
|
273 |
-
# 'tolerant': 0.08,
|
274 |
-
# 'playful': 0.06
|
275 |
-
# }
|
276 |
-
|
277 |
-
# unfriendly_traits = {
|
278 |
-
# 'aggressive': -0.15, # 加重攻擊性的懲罰
|
279 |
-
# 'nervous': -0.12, # 緊張特質可能有風險
|
280 |
-
# 'protective': -0.10, # 過度保護性需要注意
|
281 |
-
# 'territorial': -0.08 # 地域性可能造成問題
|
282 |
-
# }
|
283 |
-
|
284 |
-
# # 根據孩童年齡調整評分權重
|
285 |
-
# age_adjustments = {
|
286 |
-
# 'toddler': {
|
287 |
-
# 'bonus_mult': 0.6, # 降低正面特質的獎勵
|
288 |
-
# 'penalty_mult': 1.5 # 加重負面特質的懲罰
|
289 |
-
# },
|
290 |
-
# 'school_age': {
|
291 |
-
# 'bonus_mult': 1.0,
|
292 |
-
# 'penalty_mult': 1.0
|
293 |
-
# },
|
294 |
-
# 'teenager': {
|
295 |
-
# 'bonus_mult': 1.2, # 提高正面特質的獎勵
|
296 |
-
# 'penalty_mult': 0.8 # 降低負面特質的懲罰
|
297 |
-
# }
|
298 |
-
# }
|
299 |
-
|
300 |
-
# adj = age_adjustments.get(user_prefs.children_age,
|
301 |
-
# {'bonus_mult': 1.0, 'penalty_mult': 1.0})
|
302 |
-
|
303 |
-
# # 計算家庭相容性分數
|
304 |
-
# family_score = 0
|
305 |
-
# for trait, value in family_traits.items():
|
306 |
-
# if trait in temperament:
|
307 |
-
# family_score += value * adj['bonus_mult']
|
308 |
-
|
309 |
-
# for trait, value in unfriendly_traits.items():
|
310 |
-
# if trait in temperament:
|
311 |
-
# family_score += value * adj['penalty_mult']
|
312 |
-
|
313 |
-
# bonus += min(0.20, max(-0.30, family_score))
|
314 |
-
|
315 |
-
# # 確保總體加分在合理範圍內,但允許更大的變化
|
316 |
-
# return min(0.5, max(-0.35, bonus))
|
317 |
-
|
318 |
-
|
319 |
-
# @staticmethod
|
320 |
-
# def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
|
321 |
-
# """計算額外的評估因素"""
|
322 |
-
# factors = {
|
323 |
-
# 'versatility': 0.0, # 多功能性
|
324 |
-
# 'trainability': 0.0, # 可訓練度
|
325 |
-
# 'energy_level': 0.0, # 能量水平
|
326 |
-
# 'grooming_needs': 0.0, # 美容需求
|
327 |
-
# 'social_needs': 0.0, # 社交需求
|
328 |
-
# 'weather_adaptability': 0.0 # 氣候適應性
|
329 |
-
# }
|
330 |
-
|
331 |
-
# temperament = breed_info.get('Temperament', '').lower()
|
332 |
-
# size = breed_info.get('Size', 'Medium')
|
333 |
-
|
334 |
-
# # 1. 多功能性評估
|
335 |
-
# versatile_traits = ['intelligent', 'adaptable', 'trainable', 'athletic']
|
336 |
-
# working_roles = ['working', 'herding', 'hunting', 'sporting', 'companion']
|
337 |
-
|
338 |
-
# trait_score = sum(0.2 for trait in versatile_traits if trait in temperament)
|
339 |
-
# role_score = sum(0.2 for role in working_roles if role in breed_info.get('Description', '').lower())
|
340 |
-
|
341 |
-
# factors['versatility'] = min(1.0, trait_score + role_score)
|
342 |
-
|
343 |
-
# # 2. 可訓練度評估
|
344 |
-
# trainable_traits = {
|
345 |
-
# 'intelligent': 0.3,
|
346 |
-
# 'eager to please': 0.3,
|
347 |
-
# 'trainable': 0.2,
|
348 |
-
# 'quick learner': 0.2
|
349 |
-
# }
|
350 |
-
# factors['trainability'] = min(1.0, sum(value for trait, value in trainable_traits.items()
|
351 |
-
# if trait in temperament))
|
352 |
-
|
353 |
-
# # 3. 能量水平評估
|
354 |
-
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
355 |
-
# energy_levels = {
|
356 |
-
# 'VERY HIGH': 1.0,
|
357 |
-
# 'HIGH': 0.8,
|
358 |
-
# 'MODERATE': 0.6,
|
359 |
-
# 'LOW': 0.4,
|
360 |
-
# 'VARIES': 0.6
|
361 |
-
# }
|
362 |
-
# factors['energy_level'] = energy_levels.get(exercise_needs, 0.6)
|
363 |
-
|
364 |
-
# # 4. 美容需求評估
|
365 |
-
# grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
|
366 |
-
# grooming_levels = {
|
367 |
-
# 'HIGH': 1.0,
|
368 |
-
# 'MODERATE': 0.6,
|
369 |
-
# 'LOW': 0.3
|
370 |
-
# }
|
371 |
-
# coat_penalty = 0.2 if any(term in breed_info.get('Description', '').lower()
|
372 |
-
# for term in ['long coat', 'double coat']) else 0
|
373 |
-
# factors['grooming_needs'] = min(1.0, grooming_levels.get(grooming_needs, 0.6) + coat_penalty)
|
374 |
-
|
375 |
-
# # 5. 社交需求評估
|
376 |
-
# social_traits = ['friendly', 'social', 'affectionate', 'people-oriented']
|
377 |
-
# antisocial_traits = ['independent', 'aloof', 'reserved']
|
378 |
-
|
379 |
-
# social_score = sum(0.25 for trait in social_traits if trait in temperament)
|
380 |
-
# antisocial_score = sum(-0.2 for trait in antisocial_traits if trait in temperament)
|
381 |
-
# factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))
|
382 |
-
|
383 |
-
# # 6. 氣候適應性評估
|
384 |
-
# climate_terms = {
|
385 |
-
# 'cold': ['thick coat', 'winter', 'cold climate'],
|
386 |
-
# 'hot': ['short coat', 'warm climate', 'heat tolerant'],
|
387 |
-
# 'moderate': ['adaptable', 'all climate']
|
388 |
-
# }
|
389 |
-
|
390 |
-
# climate_matches = sum(1 for term in climate_terms[user_prefs.climate]
|
391 |
-
# if term in breed_info.get('Description', '').lower())
|
392 |
-
# factors['weather_adaptability'] = min(1.0, climate_matches * 0.3 + 0.4) # 基礎分0.4
|
393 |
-
|
394 |
-
# return factors
|
395 |
-
|
396 |
|
397 |
@staticmethod
|
398 |
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
|
@@ -653,37 +457,43 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
653 |
|
654 |
|
655 |
# def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
656 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
657 |
# base_scores = {
|
658 |
# "Small": {
|
659 |
-
# "apartment":
|
660 |
-
# "house_small": 0.
|
661 |
-
# "house_large": 0.
|
662 |
# },
|
663 |
# "Medium": {
|
664 |
-
# "apartment": 0.45,
|
665 |
-
# "house_small": 0.
|
666 |
-
# "house_large":
|
667 |
# },
|
668 |
# "Large": {
|
669 |
-
# "apartment": 0.15,
|
670 |
-
# "house_small": 0.
|
671 |
-
# "house_large":
|
672 |
# },
|
673 |
# "Giant": {
|
674 |
-
# "apartment": 0.
|
675 |
-
# "house_small": 0.45,
|
676 |
-
# "house_large":
|
677 |
# }
|
678 |
# }
|
679 |
|
680 |
# # 取得基礎分數
|
681 |
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
682 |
|
683 |
-
# #
|
684 |
# exercise_adjustments = {
|
685 |
# "Very High": {
|
686 |
-
# "apartment": -0.25, #
|
687 |
# "house_small": -0.15,
|
688 |
# "house_large": -0.05
|
689 |
# },
|
@@ -698,250 +508,352 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
698 |
# "house_large": 0
|
699 |
# },
|
700 |
# "Low": {
|
701 |
-
# "apartment": 0.05,
|
702 |
# "house_small": 0,
|
703 |
-
# "house_large": 0
|
704 |
# }
|
705 |
# }
|
706 |
|
707 |
-
# #
|
708 |
# adjustment = exercise_adjustments.get(exercise_needs,
|
709 |
# exercise_adjustments["Moderate"])[living_space]
|
710 |
|
711 |
-
# #
|
712 |
-
# yard_bonus = 0
|
713 |
# if has_yard:
|
714 |
-
#
|
715 |
-
#
|
716 |
-
#
|
717 |
-
#
|
718 |
-
#
|
719 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
720 |
|
721 |
-
#
|
722 |
-
#
|
|
|
|
|
|
|
|
|
723 |
|
724 |
|
725 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
726 |
"""
|
727 |
-
|
728 |
|
729 |
-
|
730 |
-
1.
|
731 |
-
2.
|
732 |
-
3.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
733 |
"""
|
734 |
-
#
|
735 |
-
|
|
|
|
|
|
|
|
|
|
|
736 |
"Small": {
|
737 |
-
"apartment": 0.
|
738 |
-
"house_small": 0.
|
739 |
-
"house_large": 0.
|
740 |
},
|
741 |
"Medium": {
|
742 |
-
"apartment": 0.
|
743 |
-
"house_small": 0.
|
744 |
-
"house_large": 0.
|
745 |
},
|
746 |
"Large": {
|
747 |
-
"apartment": 0.
|
748 |
-
"house_small": 0.
|
749 |
-
"house_large": 0
|
750 |
},
|
751 |
"Giant": {
|
752 |
-
"apartment": 0.
|
753 |
-
"house_small": 0.
|
754 |
-
"house_large": 0
|
755 |
}
|
756 |
}
|
757 |
|
758 |
-
#
|
759 |
-
base_score =
|
760 |
-
|
761 |
-
#
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
"
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
"
|
779 |
-
"apartment": 0.05, # 低運動需求在小空間反而有優勢
|
780 |
-
"house_small": 0,
|
781 |
-
"house_large": -0.05 # 輕微降低評分,因為空間可能過大
|
782 |
-
}
|
783 |
}
|
784 |
|
785 |
-
#
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
"Giant": 0.20,
|
793 |
-
"Large": 0.15,
|
794 |
-
"Medium": 0.10,
|
795 |
-
"Small": 0.05
|
796 |
-
}.get(size, 0.10)
|
797 |
-
|
798 |
-
# 運動需求會影響院子的重要性
|
799 |
-
if exercise_needs in ["Very High", "High"]:
|
800 |
-
yard_bonus *= 1.2
|
801 |
-
elif exercise_needs == "Low":
|
802 |
-
yard_bonus *= 0.8
|
803 |
-
|
804 |
-
current_score = base_score + adjustment + yard_bonus
|
805 |
-
else:
|
806 |
-
current_score = base_score + adjustment
|
807 |
-
|
808 |
-
# 確保分數在合理範圍內,但避免極端值
|
809 |
-
return min(0.95, max(0.15, current_score))
|
810 |
|
811 |
-
|
812 |
-
# def calculate_exercise_score(breed_needs: str, exercise_time: int) -> float:
|
813 |
-
# """
|
814 |
-
# 優化的運動需求評分系統
|
815 |
|
816 |
-
|
817 |
-
|
818 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
819 |
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
|
|
833 |
|
834 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
835 |
|
836 |
-
|
837 |
-
|
838 |
-
# if exercise_time > breed_need['max']:
|
839 |
-
# # 運動時間過長,稍微降低分數
|
840 |
-
# time_score = 0.9
|
841 |
-
# else:
|
842 |
-
# time_score = 1.0
|
843 |
-
# elif exercise_time >= breed_need['min']:
|
844 |
-
# # 在最小需求和理想需求之間,線性計算分數
|
845 |
-
# time_score = 0.7 + (exercise_time - breed_need['min']) / (breed_need['ideal'] - breed_need['min']) * 0.3
|
846 |
-
# else:
|
847 |
-
# # 運動時間不足,但仍根據比例給予分數
|
848 |
-
# time_score = max(0.3, 0.7 * (exercise_time / breed_need['min']))
|
849 |
|
850 |
-
|
851 |
-
|
852 |
|
853 |
|
854 |
-
def calculate_exercise_score(breed_needs: str, exercise_time: int,
|
855 |
"""
|
856 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
857 |
|
858 |
Parameters:
|
|
|
859 |
breed_needs: 品種的運動需求等級
|
860 |
exercise_time: 使用者能提供的運動時間(分鐘)
|
861 |
-
|
862 |
|
863 |
Returns:
|
864 |
-
|
|
|
865 |
"""
|
866 |
-
#
|
867 |
exercise_levels = {
|
868 |
'VERY HIGH': {
|
869 |
'min': 120,
|
870 |
'ideal': 150,
|
871 |
'max': 180,
|
872 |
-
'
|
873 |
-
'
|
874 |
-
'
|
875 |
},
|
876 |
'HIGH': {
|
877 |
'min': 90,
|
878 |
'ideal': 120,
|
879 |
'max': 150,
|
880 |
-
'
|
881 |
-
'
|
882 |
-
'
|
883 |
},
|
884 |
-
'MODERATE
|
885 |
-
'min':
|
886 |
'ideal': 90,
|
887 |
'max': 120,
|
888 |
-
'
|
889 |
-
'
|
890 |
-
'
|
891 |
},
|
892 |
-
'
|
893 |
-
'min':
|
894 |
'ideal': 60,
|
895 |
'max': 90,
|
896 |
-
'
|
897 |
-
'
|
898 |
-
'
|
899 |
-
},
|
900 |
-
'MODERATE LOW': {
|
901 |
-
'min': 30,
|
902 |
-
'ideal': 45,
|
903 |
-
'max': 70,
|
904 |
-
'intensity': 'light_moderate',
|
905 |
-
'sessions': 'flexible',
|
906 |
-
'preferred_types': ['light_walks', 'moderate_activity']
|
907 |
-
},
|
908 |
-
'LOW': {
|
909 |
-
'min': 15,
|
910 |
-
'ideal': 30,
|
911 |
-
'max': 45,
|
912 |
-
'intensity': 'light',
|
913 |
-
'sessions': 'single',
|
914 |
-
'preferred_types': ['light_walks']
|
915 |
}
|
916 |
}
|
917 |
|
918 |
-
#
|
919 |
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
920 |
|
921 |
-
#
|
922 |
-
|
923 |
-
if
|
924 |
-
#
|
925 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
926 |
else:
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
#
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
945 |
|
946 |
|
947 |
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
|
@@ -1075,114 +987,275 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
1075 |
return max(0.1, min(1.0, final_score))
|
1076 |
|
1077 |
|
1078 |
-
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1079 |
"""
|
1080 |
-
|
1081 |
|
1082 |
-
|
1083 |
-
1.
|
1084 |
-
2.
|
1085 |
-
3.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1086 |
"""
|
1087 |
-
|
1088 |
-
|
1089 |
-
|
1090 |
-
|
1091 |
-
|
1092 |
-
|
|
|
|
|
|
|
|
|
1093 |
},
|
1094 |
-
"
|
1095 |
-
"beginner": 0.
|
1096 |
-
"intermediate": 0.
|
1097 |
-
"advanced":
|
1098 |
},
|
1099 |
-
"
|
1100 |
-
"beginner": 0.90, #
|
1101 |
-
"intermediate": 0.
|
1102 |
-
"advanced":
|
1103 |
}
|
1104 |
}
|
1105 |
|
1106 |
-
#
|
1107 |
-
|
|
|
1108 |
|
1109 |
-
|
1110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1111 |
|
1112 |
-
|
1113 |
-
|
1114 |
-
|
|
|
|
|
|
|
|
|
|
|
1115 |
difficult_traits = {
|
1116 |
-
'stubborn': -0.
|
1117 |
-
'independent': -0.
|
1118 |
-
'dominant': -0.
|
1119 |
-
'
|
1120 |
-
'protective': -0.20, # 保護性強需要適當訓練
|
1121 |
-
'aloof': -0.15, # 冷漠性格需要耐心培養
|
1122 |
-
'energetic': -0.15, # 活潑好動需要經驗引導
|
1123 |
-
'aggressive': -0.35 # 攻擊傾向極不適合新手
|
1124 |
}
|
1125 |
|
1126 |
-
#
|
1127 |
-
|
1128 |
-
'
|
1129 |
-
'
|
1130 |
-
'
|
1131 |
-
'patient': 0.05, # 耐心的特質有助於建立關係
|
1132 |
-
'adaptable': 0.05, # 適應性強較容易照顧
|
1133 |
-
'calm': 0.06 # 冷靜的性格較好掌握
|
1134 |
}
|
1135 |
|
1136 |
-
#
|
1137 |
-
for trait,
|
1138 |
-
if trait in
|
1139 |
-
|
1140 |
-
|
1141 |
-
for trait, bonus in easy_traits.items():
|
1142 |
-
if trait in temperament_lower:
|
1143 |
-
temperament_adjustments += bonus
|
1144 |
|
1145 |
-
|
1146 |
-
|
1147 |
-
|
1148 |
-
|
1149 |
-
|
1150 |
-
|
1151 |
-
|
1152 |
-
|
1153 |
-
|
1154 |
-
|
1155 |
-
|
1156 |
-
|
1157 |
-
|
1158 |
-
|
1159 |
-
|
1160 |
-
|
1161 |
-
|
|
|
|
|
|
|
1162 |
}
|
1163 |
|
1164 |
-
for
|
1165 |
-
if
|
1166 |
-
|
1167 |
|
1168 |
-
|
1169 |
-
|
1170 |
-
|
1171 |
-
'stubborn': 0.05, # 困難特徵反而成為優勢
|
1172 |
-
'independent': 0.05,
|
1173 |
-
'intelligent': 0.10,
|
1174 |
-
'protective': 0.05,
|
1175 |
-
'strong-willed': 0.05
|
1176 |
-
}
|
1177 |
|
1178 |
-
|
1179 |
-
if trait in temperament_lower:
|
1180 |
-
temperament_adjustments += bonus
|
1181 |
|
1182 |
-
|
1183 |
-
final_score = max(0.05, min(1.0, score + temperament_adjustments))
|
1184 |
|
1185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1186 |
|
1187 |
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
1188 |
"""
|
@@ -1292,128 +1365,311 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
1292 |
return max(0.1, min(1.0, health_score))
|
1293 |
|
1294 |
|
1295 |
-
def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
1296 |
-
|
1297 |
-
|
1298 |
-
|
1299 |
-
|
1300 |
-
|
1301 |
|
1302 |
-
|
1303 |
-
|
1304 |
-
|
1305 |
|
1306 |
-
|
1307 |
-
|
1308 |
-
|
1309 |
-
|
1310 |
-
|
1311 |
-
|
1312 |
-
|
1313 |
-
|
1314 |
-
|
1315 |
-
|
1316 |
-
|
1317 |
-
|
1318 |
-
|
1319 |
-
|
1320 |
-
|
1321 |
-
|
1322 |
-
|
1323 |
-
|
1324 |
-
|
1325 |
-
|
1326 |
-
|
1327 |
-
|
1328 |
-
|
1329 |
|
1330 |
-
|
1331 |
-
|
1332 |
|
1333 |
-
|
1334 |
-
|
1335 |
-
|
1336 |
-
|
1337 |
-
|
1338 |
-
|
1339 |
-
|
1340 |
-
|
1341 |
-
|
1342 |
-
|
1343 |
-
|
1344 |
-
|
1345 |
-
|
1346 |
-
|
1347 |
-
|
1348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1349 |
},
|
1350 |
-
|
1351 |
-
|
1352 |
-
|
1353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1354 |
},
|
1355 |
-
|
1356 |
-
|
1357 |
-
|
1358 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1359 |
}
|
1360 |
}
|
1361 |
-
|
1362 |
-
#
|
1363 |
-
|
1364 |
-
|
1365 |
-
|
1366 |
-
|
1367 |
-
|
1368 |
-
|
1369 |
-
|
1370 |
-
|
1371 |
-
|
1372 |
-
|
1373 |
-
|
1374 |
-
|
1375 |
-
'
|
1376 |
-
'
|
1377 |
-
'low': -0.05
|
1378 |
},
|
1379 |
-
'
|
1380 |
-
'
|
1381 |
-
'
|
1382 |
-
'
|
|
|
|
|
|
|
|
|
|
|
1383 |
},
|
1384 |
-
'
|
1385 |
-
'
|
1386 |
-
'
|
1387 |
-
'
|
1388 |
}
|
1389 |
}
|
1390 |
|
1391 |
-
|
1392 |
-
|
1393 |
-
|
1394 |
-
|
1395 |
-
|
1396 |
-
|
1397 |
-
|
1398 |
-
|
1399 |
-
|
1400 |
-
|
1401 |
-
|
1402 |
-
|
1403 |
-
|
1404 |
-
|
1405 |
-
|
1406 |
-
|
1407 |
-
|
1408 |
-
|
1409 |
-
|
1410 |
-
|
1411 |
-
|
1412 |
-
|
1413 |
-
|
1414 |
-
|
1415 |
-
|
1416 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1417 |
|
1418 |
|
1419 |
# 1. 計算基礎分數
|
@@ -1508,126 +1764,328 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1508 |
return min(0.2, adaptability_score)
|
1509 |
|
1510 |
|
1511 |
-
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1512 |
-
|
1513 |
-
|
1514 |
-
|
1515 |
-
|
1516 |
-
|
1517 |
-
|
1518 |
-
|
1519 |
-
|
1520 |
-
|
1521 |
-
|
1522 |
-
|
1523 |
-
|
1524 |
-
|
1525 |
-
|
1526 |
-
|
1527 |
|
1528 |
-
|
1529 |
-
|
1530 |
-
|
1531 |
-
|
1532 |
-
|
1533 |
-
|
1534 |
-
|
1535 |
-
|
1536 |
-
|
1537 |
-
|
1538 |
|
1539 |
-
|
1540 |
|
1541 |
-
|
1542 |
-
|
1543 |
-
|
1544 |
-
|
1545 |
|
1546 |
-
|
1547 |
-
|
1548 |
-
|
1549 |
-
|
1550 |
-
|
1551 |
-
|
1552 |
-
|
1553 |
-
|
1554 |
|
1555 |
-
|
1556 |
|
1557 |
-
|
1558 |
-
|
1559 |
-
|
1560 |
|
1561 |
-
|
1562 |
-
|
1563 |
-
|
1564 |
-
|
1565 |
-
|
1566 |
-
|
1567 |
-
|
1568 |
-
|
1569 |
-
|
1570 |
|
1571 |
-
|
1572 |
-
|
1573 |
-
|
1574 |
-
|
1575 |
-
|
1576 |
-
|
1577 |
-
|
1578 |
-
|
1579 |
-
|
1580 |
|
1581 |
-
|
1582 |
-
|
1583 |
-
|
1584 |
-
|
1585 |
|
1586 |
-
|
1587 |
-
|
|
|
|
|
|
|
|
|
1588 |
|
1589 |
-
|
1590 |
-
|
1591 |
-
|
|
|
|
|
|
|
|
|
|
|
1592 |
|
1593 |
-
# 計算最終分數
|
1594 |
-
final_score = sum(adjusted_scores[k] * normalized_weights[k] for k in scores.keys())
|
1595 |
|
1596 |
-
|
1597 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1598 |
|
1599 |
-
|
1600 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1601 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1602 |
|
1603 |
def amplify_score_extreme(score: float) -> float:
|
1604 |
"""
|
1605 |
-
|
1606 |
-
|
1607 |
-
|
1608 |
-
|
1609 |
-
|
1610 |
-
|
1611 |
-
|
1612 |
-
|
1613 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1614 |
"""
|
1615 |
-
|
1616 |
-
|
1617 |
-
|
1618 |
-
elif score < 0.5:
|
1619 |
-
# 較差匹配:緩慢增長
|
1620 |
-
position = (score - 0.3) / 0.2
|
1621 |
-
return 0.68 + position * 0.07
|
1622 |
-
elif score < 0.7:
|
1623 |
-
# 中等匹配:穩定線性增長
|
1624 |
-
position = (score - 0.5) / 0.2
|
1625 |
-
return 0.75 + position * 0.10
|
1626 |
-
elif score < 0.85:
|
1627 |
-
# 良好匹配:加速增長
|
1628 |
-
position = (score - 0.7) / 0.15
|
1629 |
-
return 0.85 + position * 0.07
|
1630 |
-
else:
|
1631 |
-
# 優秀匹配:最後衝刺
|
1632 |
position = (score - 0.85) / 0.15
|
1633 |
-
return 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import math
|
6 |
import random
|
7 |
|
8 |
+
# @dataclass
|
9 |
+
# class UserPreferences:
|
10 |
+
|
11 |
+
# """使用者偏好設定的資料結構"""
|
12 |
+
# living_space: str # "apartment", "house_small", "house_large"
|
13 |
+
# yard_access: str # "no_yard", "shared_yard", "private_yard"
|
14 |
+
# exercise_time: int # minutes per day
|
15 |
+
# exercise_type: str # "light_walks", "moderate_activity", "active_training"
|
16 |
+
# grooming_commitment: str # "low", "medium", "high"
|
17 |
+
# experience_level: str # "beginner", "intermediate", "advanced"
|
18 |
+
# time_availability: str # "limited", "moderate", "flexible"
|
19 |
+
# has_children: bool
|
20 |
+
# children_age: str # "toddler", "school_age", "teenager"
|
21 |
+
# noise_tolerance: str # "low", "medium", "high"
|
22 |
+
# space_for_play: bool
|
23 |
+
# other_pets: bool
|
24 |
+
# climate: str # "cold", "moderate", "hot"
|
25 |
+
# health_sensitivity: str = "medium"
|
26 |
+
# barking_acceptance: str = None
|
27 |
+
|
28 |
+
# def __post_init__(self):
|
29 |
+
# """在初始化後運行,用於設置派生值"""
|
30 |
+
# if self.barking_acceptance is None:
|
31 |
+
# self.barking_acceptance = self.noise_tolerance
|
32 |
+
|
33 |
@dataclass
|
34 |
class UserPreferences:
|
35 |
+
"""使用者偏好設定的資料結構,整合基本條件與進階評估參數"""
|
36 |
+
# 基礎居住條件
|
37 |
+
living_space: str # "apartment", "house_small", "house_large"
|
38 |
+
yard_access: str # "no_yard", "shared_yard", "private_yard"
|
39 |
+
living_floor: int = 1 # 居住樓層,對公寓住戶特別重要
|
40 |
+
|
41 |
+
# 運動相關參數
|
42 |
+
exercise_time: int # 每日運動時間(分鐘)
|
43 |
+
exercise_type: str # "light_walks", "moderate_activity", "active_training"
|
44 |
+
exercise_intensity: str = "moderate" # "low", "moderate", "high"
|
45 |
+
|
46 |
+
# 照護能力與時間
|
47 |
+
grooming_commitment: str # "low", "medium", "high"
|
48 |
+
experience_level: str # "beginner", "intermediate", "advanced"
|
49 |
+
time_availability: str # "limited", "moderate", "flexible"
|
50 |
+
home_alone_time: int = 4 # 每日獨處時間(小時)
|
51 |
+
|
52 |
+
# 家庭環境
|
53 |
has_children: bool
|
54 |
+
children_age: str # "toddler", "school_age", "teenager"
|
|
|
|
|
55 |
other_pets: bool
|
56 |
+
|
57 |
+
# 環境適應性
|
58 |
+
noise_tolerance: str # "low", "medium", "high"
|
59 |
+
space_for_play: bool
|
60 |
+
climate: str # "cold", "moderate", "hot"
|
61 |
+
|
62 |
+
# 特殊需求
|
63 |
+
health_sensitivity: str = "medium" # "low", "medium", "high"
|
64 |
+
barking_acceptance: str = None # 如果未指定,默認使用 noise_tolerance
|
65 |
+
lifestyle_activity: str = "moderate" # "sedentary", "moderate", "active"
|
66 |
|
67 |
def __post_init__(self):
|
68 |
+
"""初始化後執行,用於設置派生值和驗證"""
|
69 |
if self.barking_acceptance is None:
|
70 |
self.barking_acceptance = self.noise_tolerance
|
71 |
|
|
|
196 |
bonus += min(0.15, adaptability_bonus)
|
197 |
|
198 |
return min(0.5, max(-0.25, bonus))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
@staticmethod
|
202 |
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
|
|
|
457 |
|
458 |
|
459 |
# def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
460 |
+
# """
|
461 |
+
# 主要改進:
|
462 |
+
# 1. 更均衡的基礎分數分配
|
463 |
+
# 2. 更細緻的空間需求評估
|
464 |
+
# 3. 強化運動需求與空間的關聯性
|
465 |
+
# """
|
466 |
+
# # 重新設計基礎分數矩陣,降低普遍分數以增加區別度
|
467 |
# base_scores = {
|
468 |
# "Small": {
|
469 |
+
# "apartment": 0.85, # 降低滿分機會
|
470 |
+
# "house_small": 0.80, # 小型犬不應在大空間得到太高分數
|
471 |
+
# "house_large": 0.75 # 避免小型犬總是得到最高分
|
472 |
# },
|
473 |
# "Medium": {
|
474 |
+
# "apartment": 0.45, # 維持對公寓環境的限制
|
475 |
+
# "house_small": 0.75, # 適中的分數
|
476 |
+
# "house_large": 0.85 # 給予合理的獎勵
|
477 |
# },
|
478 |
# "Large": {
|
479 |
+
# "apartment": 0.15, # 加重對大型犬在公寓的限制
|
480 |
+
# "house_small": 0.65, # 中等適合度
|
481 |
+
# "house_large": 0.90 # 最適合的環境
|
482 |
# },
|
483 |
# "Giant": {
|
484 |
+
# "apartment": 0.10, # 更嚴格的限制
|
485 |
+
# "house_small": 0.45, # 顯著的空間限制
|
486 |
+
# "house_large": 0.95 # 最理想的配對
|
487 |
# }
|
488 |
# }
|
489 |
|
490 |
# # 取得基礎分數
|
491 |
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
492 |
|
493 |
+
# # 運動需求相關的調整更加動態
|
494 |
# exercise_adjustments = {
|
495 |
# "Very High": {
|
496 |
+
# "apartment": -0.25, # 加重在受限空間的懲罰
|
497 |
# "house_small": -0.15,
|
498 |
# "house_large": -0.05
|
499 |
# },
|
|
|
508 |
# "house_large": 0
|
509 |
# },
|
510 |
# "Low": {
|
511 |
+
# "apartment": 0.05, # 低運動需求在小空間反而有優勢
|
512 |
# "house_small": 0,
|
513 |
+
# "house_large": -0.05 # 輕微降低評分,因為空間可能過大
|
514 |
# }
|
515 |
# }
|
516 |
|
517 |
+
# # 根據空間類型獲取運動需求調整
|
518 |
# adjustment = exercise_adjustments.get(exercise_needs,
|
519 |
# exercise_adjustments["Moderate"])[living_space]
|
520 |
|
521 |
+
# # 院子效益根據品種大小和運動需求動態調整
|
|
|
522 |
# if has_yard:
|
523 |
+
# yard_bonus = {
|
524 |
+
# "Giant": 0.20,
|
525 |
+
# "Large": 0.15,
|
526 |
+
# "Medium": 0.10,
|
527 |
+
# "Small": 0.05
|
528 |
+
# }.get(size, 0.10)
|
529 |
+
|
530 |
+
# # 運動需求會影響院子的重要性
|
531 |
+
# if exercise_needs in ["Very High", "High"]:
|
532 |
+
# yard_bonus *= 1.2
|
533 |
+
# elif exercise_needs == "Low":
|
534 |
+
# yard_bonus *= 0.8
|
535 |
|
536 |
+
# current_score = base_score + adjustment + yard_bonus
|
537 |
+
# else:
|
538 |
+
# current_score = base_score + adjustment
|
539 |
+
|
540 |
+
# # 確保分數在合理範圍內,但避免極端值
|
541 |
+
# return min(0.95, max(0.15, current_score))
|
542 |
|
543 |
|
544 |
+
# def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
|
545 |
+
# """
|
546 |
+
# 精確評估品種運動需求與使用者運動條件的匹配度
|
547 |
+
|
548 |
+
# Parameters:
|
549 |
+
# breed_needs: 品種的運動需求等級
|
550 |
+
# exercise_time: 使用者能提供的運動時間(分鐘)
|
551 |
+
# exercise_type: 使用者偏好的運動類型
|
552 |
+
|
553 |
+
# Returns:
|
554 |
+
# float: -0.2 到 0.2 之間的匹配分數
|
555 |
+
# """
|
556 |
+
# # 定義更細緻的運動需求等級
|
557 |
+
# exercise_levels = {
|
558 |
+
# 'VERY HIGH': {
|
559 |
+
# 'min': 120,
|
560 |
+
# 'ideal': 150,
|
561 |
+
# 'max': 180,
|
562 |
+
# 'intensity': 'high',
|
563 |
+
# 'sessions': 'multiple',
|
564 |
+
# 'preferred_types': ['active_training', 'intensive_exercise']
|
565 |
+
# },
|
566 |
+
# 'HIGH': {
|
567 |
+
# 'min': 90,
|
568 |
+
# 'ideal': 120,
|
569 |
+
# 'max': 150,
|
570 |
+
# 'intensity': 'moderate_high',
|
571 |
+
# 'sessions': 'multiple',
|
572 |
+
# 'preferred_types': ['active_training', 'moderate_activity']
|
573 |
+
# },
|
574 |
+
# 'MODERATE HIGH': {
|
575 |
+
# 'min': 70,
|
576 |
+
# 'ideal': 90,
|
577 |
+
# 'max': 120,
|
578 |
+
# 'intensity': 'moderate',
|
579 |
+
# 'sessions': 'flexible',
|
580 |
+
# 'preferred_types': ['moderate_activity', 'active_training']
|
581 |
+
# },
|
582 |
+
# 'MODERATE': {
|
583 |
+
# 'min': 45,
|
584 |
+
# 'ideal': 60,
|
585 |
+
# 'max': 90,
|
586 |
+
# 'intensity': 'moderate',
|
587 |
+
# 'sessions': 'flexible',
|
588 |
+
# 'preferred_types': ['moderate_activity', 'light_walks']
|
589 |
+
# },
|
590 |
+
# 'MODERATE LOW': {
|
591 |
+
# 'min': 30,
|
592 |
+
# 'ideal': 45,
|
593 |
+
# 'max': 70,
|
594 |
+
# 'intensity': 'light_moderate',
|
595 |
+
# 'sessions': 'flexible',
|
596 |
+
# 'preferred_types': ['light_walks', 'moderate_activity']
|
597 |
+
# },
|
598 |
+
# 'LOW': {
|
599 |
+
# 'min': 15,
|
600 |
+
# 'ideal': 30,
|
601 |
+
# 'max': 45,
|
602 |
+
# 'intensity': 'light',
|
603 |
+
# 'sessions': 'single',
|
604 |
+
# 'preferred_types': ['light_walks']
|
605 |
+
# }
|
606 |
+
# }
|
607 |
+
|
608 |
+
# # 獲取品種的運動需求配置
|
609 |
+
# breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
610 |
+
|
611 |
+
# # 計算時間匹配度(使用更平滑的評分曲線)
|
612 |
+
# if exercise_time >= breed_level['ideal']:
|
613 |
+
# if exercise_time > breed_level['max']:
|
614 |
+
# # 運動時間過長,適度降分
|
615 |
+
# time_score = 0.15 - (0.05 * (exercise_time - breed_level['max']) / 30)
|
616 |
+
# else:
|
617 |
+
# time_score = 0.15
|
618 |
+
# elif exercise_time >= breed_level['min']:
|
619 |
+
# # 在最小需求和理想需求之間,線性計算分數
|
620 |
+
# time_ratio = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
|
621 |
+
# time_score = 0.05 + (time_ratio * 0.10)
|
622 |
+
# else:
|
623 |
+
# # 運動時間不足,根據差距程度扣分
|
624 |
+
# time_ratio = max(0, exercise_time / breed_level['min'])
|
625 |
+
# time_score = -0.15 * (1 - time_ratio)
|
626 |
+
|
627 |
+
# # 運動類型匹配度評估
|
628 |
+
# type_score = 0.0
|
629 |
+
# if exercise_type in breed_level['preferred_types']:
|
630 |
+
# type_score = 0.05
|
631 |
+
# if exercise_type == breed_level['preferred_types'][0]:
|
632 |
+
# type_score = 0.08 # 最佳匹配類型給予更高分數
|
633 |
+
|
634 |
+
# return max(-0.2, min(0.2, time_score + type_score))
|
635 |
+
|
636 |
+
|
637 |
+
def calculate_space_score(breed_info: dict, user_prefs: UserPreferences) -> float:
|
638 |
"""
|
639 |
+
計算品種與居住空間的匹配程度
|
640 |
|
641 |
+
這個函數實現了一個全面的空間評分系統,考慮:
|
642 |
+
1. 基本空間需求(住所類型與品種大小的匹配)
|
643 |
+
2. 樓層因素(特別是公寓住戶)
|
644 |
+
3. 戶外活動空間(院子類型及可用性)
|
645 |
+
4. 室內活動空間的實際可用性
|
646 |
+
5. 品種的特殊空間需求
|
647 |
+
|
648 |
+
Parameters:
|
649 |
+
-----------
|
650 |
+
breed_info: 包含品種特徵的字典,包括體型、活動需求等
|
651 |
+
user_prefs: 使用者偏好設定,包含居住條件相關信息
|
652 |
+
|
653 |
+
Returns:
|
654 |
+
--------
|
655 |
+
float: 0.0-1.0 之間的匹配分數
|
656 |
"""
|
657 |
+
# 取得品種基本信息
|
658 |
+
size = breed_info.get('Size', 'Medium')
|
659 |
+
temperament = breed_info.get('Temperament', '').lower()
|
660 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
661 |
+
|
662 |
+
# 基礎空間需求評分矩陣 - 考慮品種大小與居住空間的基本匹配度
|
663 |
+
base_space_scores = {
|
664 |
"Small": {
|
665 |
+
"apartment": 0.95, # 小型犬最適合��寓
|
666 |
+
"house_small": 0.90, # 小房子也很適合
|
667 |
+
"house_large": 0.85 # 大房子可能過大
|
668 |
},
|
669 |
"Medium": {
|
670 |
+
"apartment": 0.60, # 中型犬在公寓有一定限制
|
671 |
+
"house_small": 0.85, # 小房子較適合
|
672 |
+
"house_large": 0.95 # 大房子最理想
|
673 |
},
|
674 |
"Large": {
|
675 |
+
"apartment": 0.30, # 大型犬不適合公寓
|
676 |
+
"house_small": 0.70, # 小房子稍嫌擁擠
|
677 |
+
"house_large": 1.0 # 大房子最理想
|
678 |
},
|
679 |
"Giant": {
|
680 |
+
"apartment": 0.20, # 極大型犬極不適合公寓
|
681 |
+
"house_small": 0.50, # 小房子明顯不足
|
682 |
+
"house_large": 1.0 # 大房子必需
|
683 |
}
|
684 |
}
|
685 |
|
686 |
+
# 取得基礎空間分數
|
687 |
+
base_score = base_space_scores.get(size, base_space_scores["Medium"])[user_prefs.living_space]
|
688 |
+
|
689 |
+
# 公寓特殊考量
|
690 |
+
if user_prefs.living_space == "apartment":
|
691 |
+
# 樓層調整
|
692 |
+
floor_penalty = 0
|
693 |
+
if user_prefs.living_floor > 1:
|
694 |
+
if size in ["Large", "Giant"]:
|
695 |
+
floor_penalty = min(0.3, (user_prefs.living_floor - 1) * 0.05)
|
696 |
+
elif size == "Medium":
|
697 |
+
floor_penalty = min(0.2, (user_prefs.living_floor - 1) * 0.03)
|
698 |
+
else:
|
699 |
+
floor_penalty = min(0.1, (user_prefs.living_floor - 1) * 0.02)
|
700 |
+
base_score = max(0.2, base_score - floor_penalty)
|
701 |
+
|
702 |
+
# 戶外空間評估
|
703 |
+
yard_scores = {
|
704 |
+
"no_yard": 0,
|
705 |
+
"shared_yard": 0.1,
|
706 |
+
"private_yard": 0.2
|
|
|
|
|
|
|
|
|
707 |
}
|
708 |
|
709 |
+
# 根據品種大小調整院子加分
|
710 |
+
yard_size_multipliers = {
|
711 |
+
"Giant": 1.2,
|
712 |
+
"Large": 1.1,
|
713 |
+
"Medium": 1.0,
|
714 |
+
"Small": 0.8
|
715 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
716 |
|
717 |
+
yard_bonus = yard_scores[user_prefs.yard_access] * yard_size_multipliers.get(size, 1.0)
|
|
|
|
|
|
|
718 |
|
719 |
+
# 活動空間需求評估
|
720 |
+
activity_space_score = 0
|
721 |
+
if user_prefs.space_for_play:
|
722 |
+
if exercise_needs in ["VERY HIGH", "HIGH"]:
|
723 |
+
activity_space_score = 0.15
|
724 |
+
elif exercise_needs == "MODERATE":
|
725 |
+
activity_space_score = 0.10
|
726 |
+
else:
|
727 |
+
activity_space_score = 0.05
|
728 |
|
729 |
+
# 品種特性評估
|
730 |
+
temperament_adjustments = 0
|
731 |
+
if 'active' in temperament or 'energetic' in temperament:
|
732 |
+
if user_prefs.living_space == 'apartment':
|
733 |
+
temperament_adjustments -= 0.15
|
734 |
+
elif user_prefs.living_space == 'house_small':
|
735 |
+
temperament_adjustments -= 0.05
|
736 |
+
|
737 |
+
if 'calm' in temperament or 'lazy' in temperament:
|
738 |
+
if user_prefs.living_space == 'apartment':
|
739 |
+
temperament_adjustments += 0.10
|
740 |
+
|
741 |
+
if 'adaptable' in temperament:
|
742 |
+
temperament_adjustments += 0.05
|
743 |
|
744 |
+
# 家庭環境考量
|
745 |
+
if user_prefs.has_children:
|
746 |
+
if user_prefs.living_space == 'apartment':
|
747 |
+
# 公寓中有孩童需要更多活動空間
|
748 |
+
if size in ["Large", "Giant"]:
|
749 |
+
base_score *= 0.85
|
750 |
+
elif size == "Medium":
|
751 |
+
base_score *= 0.90
|
752 |
|
753 |
+
# 整合所有評分因素
|
754 |
+
final_score = base_score + yard_bonus + activity_space_score + temperament_adjustments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
755 |
|
756 |
+
# 確保最終分數在合理範圍內
|
757 |
+
return max(0.15, min(1.0, final_score))
|
758 |
|
759 |
|
760 |
+
def calculate_exercise_score(breed_needs: str, exercise_time: int, user_prefs: 'UserPreferences') -> float:
|
761 |
"""
|
762 |
+
計算品種運動需求與使用者條件的匹配分數
|
763 |
+
|
764 |
+
這個函數實現了一個精細的運動評分系統,考慮:
|
765 |
+
1. 運動時間的匹配度(0-180分鐘)
|
766 |
+
2. 運動強度的適配性
|
767 |
+
3. 品種特性對運動的特殊需求
|
768 |
+
4. 生活方式的整體活躍度
|
769 |
|
770 |
Parameters:
|
771 |
+
-----------
|
772 |
breed_needs: 品種的運動需求等級
|
773 |
exercise_time: 使用者能提供的運動時間(分鐘)
|
774 |
+
user_prefs: 使用者偏好設定,包含運動類型和強度等信息
|
775 |
|
776 |
Returns:
|
777 |
+
--------
|
778 |
+
float: 0.0-1.0 之間的匹配分數
|
779 |
"""
|
780 |
+
# 定義更精確的運動需求標準
|
781 |
exercise_levels = {
|
782 |
'VERY HIGH': {
|
783 |
'min': 120,
|
784 |
'ideal': 150,
|
785 |
'max': 180,
|
786 |
+
'intensity_required': 'high',
|
787 |
+
'intensity_factors': {'high': 1.2, 'moderate': 0.8, 'low': 0.6},
|
788 |
+
'type_bonus': {'active_training': 0.15, 'moderate_activity': 0.05, 'light_walks': -0.1}
|
789 |
},
|
790 |
'HIGH': {
|
791 |
'min': 90,
|
792 |
'ideal': 120,
|
793 |
'max': 150,
|
794 |
+
'intensity_required': 'moderate',
|
795 |
+
'intensity_factors': {'high': 1.1, 'moderate': 1.0, 'low': 0.7},
|
796 |
+
'type_bonus': {'active_training': 0.1, 'moderate_activity': 0.1, 'light_walks': -0.05}
|
797 |
},
|
798 |
+
'MODERATE': {
|
799 |
+
'min': 60,
|
800 |
'ideal': 90,
|
801 |
'max': 120,
|
802 |
+
'intensity_required': 'moderate',
|
803 |
+
'intensity_factors': {'high': 1.0, 'moderate': 1.0, 'low': 0.8},
|
804 |
+
'type_bonus': {'active_training': 0.05, 'moderate_activity': 0.1, 'light_walks': 0.05}
|
805 |
},
|
806 |
+
'LOW': {
|
807 |
+
'min': 30,
|
808 |
'ideal': 60,
|
809 |
'max': 90,
|
810 |
+
'intensity_required': 'low',
|
811 |
+
'intensity_factors': {'high': 0.7, 'moderate': 0.9, 'low': 1.0},
|
812 |
+
'type_bonus': {'active_training': -0.05, 'moderate_activity': 0.05, 'light_walks': 0.1}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
813 |
}
|
814 |
}
|
815 |
|
816 |
+
# 獲取品種運動需求配置
|
817 |
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
818 |
|
819 |
+
# 計算基礎運動時間分數
|
820 |
+
def calculate_time_score(time: int, level: dict) -> float:
|
821 |
+
if time < level['min']:
|
822 |
+
# 運動時間不足,指數下降
|
823 |
+
return max(0.3, (time / level['min']) ** 1.5)
|
824 |
+
elif time < level['ideal']:
|
825 |
+
# 運動時間接近理想,線性增長
|
826 |
+
return 0.7 + 0.3 * ((time - level['min']) / (level['ideal'] - level['min']))
|
827 |
+
elif time <= level['max']:
|
828 |
+
# 理想運動時間範圍,高分保持
|
829 |
+
return 1.0
|
830 |
else:
|
831 |
+
# 運動時間過多,緩慢扣分
|
832 |
+
excess = (time - level['max']) / 30 # 每超過30分鐘扣分
|
833 |
+
return max(0.7, 1.0 - (excess * 0.1))
|
834 |
+
|
835 |
+
# 計算運動時間基礎分數
|
836 |
+
time_score = calculate_time_score(exercise_time, breed_level)
|
837 |
+
|
838 |
+
# 計算運動強度匹配度
|
839 |
+
intensity_factor = breed_level['intensity_factors'].get(user_prefs.exercise_intensity, 1.0)
|
840 |
+
|
841 |
+
# 運動類型加成
|
842 |
+
type_bonus = breed_level['type_bonus'].get(user_prefs.exercise_type, 0)
|
843 |
+
|
844 |
+
# 生活方式調整
|
845 |
+
lifestyle_adjustments = {
|
846 |
+
'sedentary': -0.1,
|
847 |
+
'moderate': 0,
|
848 |
+
'active': 0.1
|
849 |
+
}
|
850 |
+
lifestyle_factor = lifestyle_adjustments.get(user_prefs.lifestyle_activity, 0)
|
851 |
+
|
852 |
+
# 整合所有因素
|
853 |
+
final_score = time_score * intensity_factor + type_bonus + lifestyle_factor
|
854 |
+
|
855 |
+
# 確保分數在合理範圍內
|
856 |
+
return max(0.1, min(1.0, final_score))
|
857 |
|
858 |
|
859 |
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
|
|
|
987 |
return max(0.1, min(1.0, final_score))
|
988 |
|
989 |
|
990 |
+
# def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
991 |
+
# """
|
992 |
+
# 計算使用者經驗與品種需求的匹配分數,加強經驗等級的影響力
|
993 |
+
|
994 |
+
# 重要改進:
|
995 |
+
# 1. 擴大基礎分數差異
|
996 |
+
# 2. 加重困難特徵的懲罰
|
997 |
+
# 3. 更細緻的品種特性評估
|
998 |
+
# """
|
999 |
+
# # 基礎分數矩陣 - 大幅擴大不同經驗等級的分數差異
|
1000 |
+
# base_scores = {
|
1001 |
+
# "High": {
|
1002 |
+
# "beginner": 0.10, # 降低起始分,高難度品種對新手幾乎不推薦
|
1003 |
+
# "intermediate": 0.60, # 中級玩家仍需謹慎
|
1004 |
+
# "advanced": 1.0 # 資深者能完全勝任
|
1005 |
+
# },
|
1006 |
+
# "Moderate": {
|
1007 |
+
# "beginner": 0.35, # 適中難度對新手仍具挑戰
|
1008 |
+
# "intermediate": 0.80, # 中級玩家較適合
|
1009 |
+
# "advanced": 1.0 # 資深者完全勝任
|
1010 |
+
# },
|
1011 |
+
# "Low": {
|
1012 |
+
# "beginner": 0.90, # 新手友善品種
|
1013 |
+
# "intermediate": 0.95, # 中級玩家幾乎完全勝任
|
1014 |
+
# "advanced": 1.0 # 資深者完全勝任
|
1015 |
+
# }
|
1016 |
+
# }
|
1017 |
+
|
1018 |
+
# # 取得基礎分數
|
1019 |
+
# score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
|
1020 |
+
|
1021 |
+
# temperament_lower = temperament.lower()
|
1022 |
+
# temperament_adjustments = 0.0
|
1023 |
+
|
1024 |
+
# # 根據經驗等級設定不同的特徵評估標準
|
1025 |
+
# if user_experience == "beginner":
|
1026 |
+
# # 新手不適合的特徵 - 更嚴格的懲罰
|
1027 |
+
# difficult_traits = {
|
1028 |
+
# 'stubborn': -0.30, # 固執性格嚴重影響新手
|
1029 |
+
# 'independent': -0.25, # 獨立性高的品種不適合新手
|
1030 |
+
# 'dominant': -0.25, # 支配性強的品種需要經驗處理
|
1031 |
+
# 'strong-willed': -0.20, # 強勢性格需要技巧管理
|
1032 |
+
# 'protective': -0.20, # 保護性強需要適當訓練
|
1033 |
+
# 'aloof': -0.15, # 冷漠性格需要耐心培養
|
1034 |
+
# 'energetic': -0.15, # 活潑好動需要經驗引導
|
1035 |
+
# 'aggressive': -0.35 # 攻擊傾向極不適合新手
|
1036 |
+
# }
|
1037 |
+
|
1038 |
+
# # 新手友善的特徵 - 適度的獎勵
|
1039 |
+
# easy_traits = {
|
1040 |
+
# 'gentle': 0.05, # 溫和性格適合新手
|
1041 |
+
# 'friendly': 0.05, # 友善性格容易相處
|
1042 |
+
# 'eager to please': 0.08, # 願意服從較容易訓練
|
1043 |
+
# 'patient': 0.05, # 耐心的特質有助於建立關係
|
1044 |
+
# 'adaptable': 0.05, # 適應性強較容易照顧
|
1045 |
+
# 'calm': 0.06 # 冷靜的性格較好掌握
|
1046 |
+
# }
|
1047 |
+
|
1048 |
+
# # 計算特徵調整
|
1049 |
+
# for trait, penalty in difficult_traits.items():
|
1050 |
+
# if trait in temperament_lower:
|
1051 |
+
# temperament_adjustments += penalty
|
1052 |
+
|
1053 |
+
# for trait, bonus in easy_traits.items():
|
1054 |
+
# if trait in temperament_lower:
|
1055 |
+
# temperament_adjustments += bonus
|
1056 |
+
|
1057 |
+
# # 品種類型特殊評估
|
1058 |
+
# if 'terrier' in temperament_lower:
|
1059 |
+
# temperament_adjustments -= 0.20 # 梗類犬種通常不適合新手
|
1060 |
+
# elif 'working' in temperament_lower:
|
1061 |
+
# temperament_adjustments -= 0.25 # 工作犬需要經驗豐富的主人
|
1062 |
+
# elif 'guard' in temperament_lower:
|
1063 |
+
# temperament_adjustments -= 0.25 # 護衛犬需要專業訓練
|
1064 |
+
|
1065 |
+
# elif user_experience == "intermediate":
|
1066 |
+
# # 中級玩家的特徵評估
|
1067 |
+
# moderate_traits = {
|
1068 |
+
# 'stubborn': -0.15, # 仍然需要注意,但懲罰較輕
|
1069 |
+
# 'independent': -0.10,
|
1070 |
+
# 'intelligent': 0.08, # 聰明的特質可以好好發揮
|
1071 |
+
# 'athletic': 0.06, # 運動能力可以適當訓練
|
1072 |
+
# 'versatile': 0.07, # 多功能性可以開發
|
1073 |
+
# 'protective': -0.08 # 保護性仍需注意
|
1074 |
+
# }
|
1075 |
+
|
1076 |
+
# for trait, adjustment in moderate_traits.items():
|
1077 |
+
# if trait in temperament_lower:
|
1078 |
+
# temperament_adjustments += adjustment
|
1079 |
+
|
1080 |
+
# else: # advanced
|
1081 |
+
# # 資深玩家能夠應對挑戰性特徵
|
1082 |
+
# advanced_traits = {
|
1083 |
+
# 'stubborn': 0.05, # 困難特徵反而成為優勢
|
1084 |
+
# 'independent': 0.05,
|
1085 |
+
# 'intelligent': 0.10,
|
1086 |
+
# 'protective': 0.05,
|
1087 |
+
# 'strong-willed': 0.05
|
1088 |
+
# }
|
1089 |
+
|
1090 |
+
# for trait, bonus in advanced_traits.items():
|
1091 |
+
# if trait in temperament_lower:
|
1092 |
+
# temperament_adjustments += bonus
|
1093 |
+
|
1094 |
+
# # 確保最終分數範圍更大,讓差異更明顯
|
1095 |
+
# final_score = max(0.05, min(1.0, score + temperament_adjustments))
|
1096 |
+
|
1097 |
+
# return final_score
|
1098 |
+
|
1099 |
+
|
1100 |
+
def calculate_experience_score(breed_info: dict, user_prefs: UserPreferences) -> float:
|
1101 |
"""
|
1102 |
+
計算飼主經驗與品種需求的匹配分數
|
1103 |
|
1104 |
+
這個函數實現了一個全面的經驗評分系統,考慮:
|
1105 |
+
1. 品種的基本照護難度
|
1106 |
+
2. 飼主的經驗水平
|
1107 |
+
3. 特殊照護需求(如健康問題、行為訓練)
|
1108 |
+
4. 時間投入與生活方式的匹配
|
1109 |
+
5. 家庭環境對照護的影響
|
1110 |
+
|
1111 |
+
特別注意:
|
1112 |
+
- 新手飼主面對高難度品種時的顯著降分
|
1113 |
+
- 資深飼主照顧簡單品種的微幅降分
|
1114 |
+
- 特殊需求品種的額外評估
|
1115 |
+
|
1116 |
+
Parameters:
|
1117 |
+
-----------
|
1118 |
+
breed_info: 包含品種特徵的字典
|
1119 |
+
user_prefs: 使用者偏好設定
|
1120 |
+
|
1121 |
+
Returns:
|
1122 |
+
--------
|
1123 |
+
float: 0.0-1.0 之間的匹配分數
|
1124 |
"""
|
1125 |
+
care_level = breed_info.get('Care Level', 'MODERATE').upper()
|
1126 |
+
temperament = breed_info.get('Temperament', '').lower()
|
1127 |
+
health_issues = breed_info.get('Health Issues', '').lower()
|
1128 |
+
|
1129 |
+
# 基礎照護難度評分矩陣
|
1130 |
+
base_experience_scores = {
|
1131 |
+
"HIGH": {
|
1132 |
+
"beginner": 0.30, # 高難度品種對新手極具挑戰
|
1133 |
+
"intermediate": 0.70, # 中級飼主需要額外努力
|
1134 |
+
"advanced": 0.95 # 資深飼主最適合
|
1135 |
},
|
1136 |
+
"MODERATE": {
|
1137 |
+
"beginner": 0.60, # 中等難度對新手有一定挑戰
|
1138 |
+
"intermediate": 0.85, # 中級飼主較適合
|
1139 |
+
"advanced": 0.90 # 資深飼主可能稍嫌簡單
|
1140 |
},
|
1141 |
+
"LOW": {
|
1142 |
+
"beginner": 0.90, # 低難度適合新手
|
1143 |
+
"intermediate": 0.85, # 中級飼主可能感覺無趣
|
1144 |
+
"advanced": 0.80 # 資深飼主可能缺乏挑戰
|
1145 |
}
|
1146 |
}
|
1147 |
|
1148 |
+
# 取得基礎經驗分數
|
1149 |
+
base_score = base_experience_scores.get(care_level,
|
1150 |
+
base_experience_scores["MODERATE"])[user_prefs.experience_level]
|
1151 |
|
1152 |
+
# 時間可用性評估
|
1153 |
+
time_adjustments = {
|
1154 |
+
"limited": {
|
1155 |
+
"HIGH": -0.20,
|
1156 |
+
"MODERATE": -0.15,
|
1157 |
+
"LOW": -0.10
|
1158 |
+
},
|
1159 |
+
"moderate": {
|
1160 |
+
"HIGH": -0.10,
|
1161 |
+
"MODERATE": -0.05,
|
1162 |
+
"LOW": 0
|
1163 |
+
},
|
1164 |
+
"flexible": {
|
1165 |
+
"HIGH": 0,
|
1166 |
+
"MODERATE": 0.05,
|
1167 |
+
"LOW": 0.10
|
1168 |
+
}
|
1169 |
+
}
|
1170 |
|
1171 |
+
time_adjustment = time_adjustments[user_prefs.time_availability][care_level]
|
1172 |
+
|
1173 |
+
# 行為特徵評估
|
1174 |
+
def evaluate_temperament(temp: str, exp_level: str) -> float:
|
1175 |
+
"""評估品種性格特徵與飼主經驗的匹配度"""
|
1176 |
+
score = 0
|
1177 |
+
|
1178 |
+
# 困難特徵評估
|
1179 |
difficult_traits = {
|
1180 |
+
'stubborn': {'beginner': -0.20, 'intermediate': -0.10, 'advanced': 0},
|
1181 |
+
'independent': {'beginner': -0.15, 'intermediate': -0.08, 'advanced': 0},
|
1182 |
+
'dominant': {'beginner': -0.20, 'intermediate': -0.10, 'advanced': -0.05},
|
1183 |
+
'aggressive': {'beginner': -0.25, 'intermediate': -0.15, 'advanced': -0.10}
|
|
|
|
|
|
|
|
|
1184 |
}
|
1185 |
|
1186 |
+
# 友善特徵評估
|
1187 |
+
friendly_traits = {
|
1188 |
+
'friendly': {'beginner': 0.10, 'intermediate': 0.05, 'advanced': 0},
|
1189 |
+
'gentle': {'beginner': 0.10, 'intermediate': 0.05, 'advanced': 0},
|
1190 |
+
'easy to train': {'beginner': 0.15, 'intermediate': 0.10, 'advanced': 0.05}
|
|
|
|
|
|
|
1191 |
}
|
1192 |
|
1193 |
+
# 計算特徵分數
|
1194 |
+
for trait, penalties in difficult_traits.items():
|
1195 |
+
if trait in temp:
|
1196 |
+
score += penalties[exp_level]
|
|
|
|
|
|
|
|
|
1197 |
|
1198 |
+
for trait, bonuses in friendly_traits.items():
|
1199 |
+
if trait in temp:
|
1200 |
+
score += bonuses[exp_level]
|
1201 |
+
|
1202 |
+
return score
|
1203 |
+
|
1204 |
+
temperament_adjustment = evaluate_temperament(temperament, user_prefs.experience_level)
|
1205 |
+
|
1206 |
+
# 健康問題評估
|
1207 |
+
def evaluate_health_needs(health: str, exp_level: str) -> float:
|
1208 |
+
"""評估健康問題的照護難度"""
|
1209 |
+
score = 0
|
1210 |
+
serious_conditions = ['hip dysplasia', 'heart disease', 'cancer']
|
1211 |
+
moderate_conditions = ['allergies', 'skin problems', 'ear infections']
|
1212 |
+
|
1213 |
+
# 根據經驗等級調整健康問題的影響
|
1214 |
+
health_impact = {
|
1215 |
+
'beginner': {'serious': -0.20, 'moderate': -0.10},
|
1216 |
+
'intermediate': {'serious': -0.15, 'moderate': -0.05},
|
1217 |
+
'advanced': {'serious': -0.10, 'moderate': -0.03}
|
1218 |
}
|
1219 |
|
1220 |
+
for condition in serious_conditions:
|
1221 |
+
if condition in health:
|
1222 |
+
score += health_impact[exp_level]['serious']
|
1223 |
|
1224 |
+
for condition in moderate_conditions:
|
1225 |
+
if condition in health:
|
1226 |
+
score += health_impact[exp_level]['moderate']
|
|
|
|
|
|
|
|
|
|
|
|
|
1227 |
|
1228 |
+
return score
|
|
|
|
|
1229 |
|
1230 |
+
health_adjustment = evaluate_health_needs(health_issues, user_prefs.experience_level)
|
|
|
1231 |
|
1232 |
+
# 家庭環境考量
|
1233 |
+
family_adjustment = 0
|
1234 |
+
if user_prefs.has_children:
|
1235 |
+
if user_prefs.children_age == 'toddler':
|
1236 |
+
if user_prefs.experience_level == 'beginner':
|
1237 |
+
family_adjustment -= 0.15
|
1238 |
+
elif user_prefs.experience_level == 'intermediate':
|
1239 |
+
family_adjustment -= 0.10
|
1240 |
+
elif user_prefs.children_age == 'school_age':
|
1241 |
+
if user_prefs.experience_level == 'beginner':
|
1242 |
+
family_adjustment -= 0.10
|
1243 |
+
|
1244 |
+
# 生活方式匹配度
|
1245 |
+
lifestyle_adjustments = {
|
1246 |
+
'sedentary': -0.10 if care_level == 'HIGH' else 0,
|
1247 |
+
'moderate': 0,
|
1248 |
+
'active': 0.10 if care_level in ['HIGH', 'MODERATE'] else 0
|
1249 |
+
}
|
1250 |
+
lifestyle_adjustment = lifestyle_adjustments[user_prefs.lifestyle_activity]
|
1251 |
+
|
1252 |
+
# 整合所有評分因素
|
1253 |
+
final_score = base_score + time_adjustment + temperament_adjustment + \
|
1254 |
+
health_adjustment + family_adjustment + lifestyle_adjustment
|
1255 |
+
|
1256 |
+
# 確保最終分數在合理範圍內
|
1257 |
+
return max(0.15, min(1.0, final_score))
|
1258 |
+
|
1259 |
|
1260 |
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
1261 |
"""
|
|
|
1365 |
return max(0.1, min(1.0, health_score))
|
1366 |
|
1367 |
|
1368 |
+
# def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
1369 |
+
# """
|
1370 |
+
# 計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估
|
1371 |
+
# """
|
1372 |
+
# if breed_name not in breed_noise_info:
|
1373 |
+
# return 0.5
|
1374 |
|
1375 |
+
# noise_info = breed_noise_info[breed_name]
|
1376 |
+
# noise_level = noise_info['noise_level'].lower()
|
1377 |
+
# noise_notes = noise_info['noise_notes'].lower()
|
1378 |
|
1379 |
+
# # 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度
|
1380 |
+
# base_scores = {
|
1381 |
+
# 'low': {
|
1382 |
+
# 'low': 1.0, # 安靜的狗對低容忍完美匹配
|
1383 |
+
# 'medium': 0.95, # 安靜的狗對一般容忍很好
|
1384 |
+
# 'high': 0.90 # 安靜的狗對高容忍當然可以
|
1385 |
+
# },
|
1386 |
+
# 'medium': {
|
1387 |
+
# 'low': 0.60, # 一般吠叫對低容忍較困難
|
1388 |
+
# 'medium': 0.90, # 一般吠叫對一般容忍可接受
|
1389 |
+
# 'high': 0.95 # 一般吠叫對高容忍很好
|
1390 |
+
# },
|
1391 |
+
# 'high': {
|
1392 |
+
# 'low': 0.25, # 愛叫的狗對低容忍極不適合
|
1393 |
+
# 'medium': 0.65, # 愛叫的狗對一般容忍有挑戰
|
1394 |
+
# 'high': 0.90 # 愛叫的狗對高容忍可以接受
|
1395 |
+
# },
|
1396 |
+
# 'varies': {
|
1397 |
+
# 'low': 0.50, # 不確定的情況對低容忍風險較大
|
1398 |
+
# 'medium': 0.75, # 不確定的情況對一般容忍可嘗試
|
1399 |
+
# 'high': 0.85 # 不確定的情況對高容忍問題較小
|
1400 |
+
# }
|
1401 |
+
# }
|
1402 |
|
1403 |
+
# # 取得基礎分數
|
1404 |
+
# base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance]
|
1405 |
|
1406 |
+
# # 吠叫原因評估,根據環境調整懲罰程度
|
1407 |
+
# barking_penalties = {
|
1408 |
+
# 'separation anxiety': {
|
1409 |
+
# 'apartment': -0.30, # 在公寓對鄰居影響更大
|
1410 |
+
# 'house_small': -0.25,
|
1411 |
+
# 'house_large': -0.20
|
1412 |
+
# },
|
1413 |
+
# 'excessive barking': {
|
1414 |
+
# 'apartment': -0.25,
|
1415 |
+
# 'house_small': -0.20,
|
1416 |
+
# 'house_large': -0.15
|
1417 |
+
# },
|
1418 |
+
# 'territorial': {
|
1419 |
+
# 'apartment': -0.20, # 在公寓更容易被觸發
|
1420 |
+
# 'house_small': -0.15,
|
1421 |
+
# 'house_large': -0.10
|
1422 |
+
# },
|
1423 |
+
# 'alert barking': {
|
1424 |
+
# 'apartment': -0.15, # 公寓環境刺激較多
|
1425 |
+
# 'house_small': -0.10,
|
1426 |
+
# 'house_large': -0.08
|
1427 |
+
# },
|
1428 |
+
# 'attention seeking': {
|
1429 |
+
# 'apartment': -0.15,
|
1430 |
+
# 'house_small': -0.12,
|
1431 |
+
# 'house_large': -0.10
|
1432 |
+
# }
|
1433 |
+
# }
|
1434 |
+
|
1435 |
+
# # 計算環境相關的吠叫懲罰
|
1436 |
+
# living_space = user_prefs.living_space
|
1437 |
+
# barking_penalty = 0
|
1438 |
+
# for trigger, penalties in barking_penalties.items():
|
1439 |
+
# if trigger in noise_notes:
|
1440 |
+
# barking_penalty += penalties.get(living_space, -0.15)
|
1441 |
+
|
1442 |
+
# # 特殊情況評估
|
1443 |
+
# special_adjustments = 0
|
1444 |
+
# if user_prefs.has_children:
|
1445 |
+
# # 孩童年齡相關調整
|
1446 |
+
# child_age_adjustments = {
|
1447 |
+
# 'toddler': {
|
1448 |
+
# 'high': -0.20, # 幼童對吵鬧更敏感
|
1449 |
+
# 'medium': -0.15,
|
1450 |
+
# 'low': -0.05
|
1451 |
+
# },
|
1452 |
+
# 'school_age': {
|
1453 |
+
# 'high': -0.15,
|
1454 |
+
# 'medium': -0.10,
|
1455 |
+
# 'low': -0.05
|
1456 |
+
# },
|
1457 |
+
# 'teenager': {
|
1458 |
+
# 'high': -0.10,
|
1459 |
+
# 'medium': -0.05,
|
1460 |
+
# 'low': -0.02
|
1461 |
+
# }
|
1462 |
+
# }
|
1463 |
+
|
1464 |
+
# # 根據孩童年齡和噪音等級調整
|
1465 |
+
# age_adj = child_age_adjustments.get(user_prefs.children_age,
|
1466 |
+
# child_age_adjustments['school_age'])
|
1467 |
+
# special_adjustments += age_adj.get(noise_level, -0.10)
|
1468 |
+
|
1469 |
+
# # 訓練性補償評估
|
1470 |
+
# trainability_bonus = 0
|
1471 |
+
# if 'responds well to training' in noise_notes:
|
1472 |
+
# trainability_bonus = 0.12
|
1473 |
+
# elif 'can be trained' in noise_notes:
|
1474 |
+
# trainability_bonus = 0.08
|
1475 |
+
# elif 'difficult to train' in noise_notes:
|
1476 |
+
# trainability_bonus = 0.02
|
1477 |
+
|
1478 |
+
# # 夜間吠叫特別考量
|
1479 |
+
# if 'night barking' in noise_notes or 'howls' in noise_notes:
|
1480 |
+
# if user_prefs.living_space == 'apartment':
|
1481 |
+
# special_adjustments -= 0.15
|
1482 |
+
# elif user_prefs.living_space == 'house_small':
|
1483 |
+
# special_adjustments -= 0.10
|
1484 |
+
# else:
|
1485 |
+
# special_adjustments -= 0.05
|
1486 |
+
|
1487 |
+
# # 計算最終分數,確保更大的分數範圍
|
1488 |
+
# final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
|
1489 |
+
# return max(0.1, min(1.0, final_score))
|
1490 |
+
|
1491 |
+
|
1492 |
+
def calculate_noise_score(breed_info: dict, user_prefs: UserPreferences) -> float:
|
1493 |
+
"""
|
1494 |
+
計算品種噪音特性與使用者需求的匹配分數
|
1495 |
+
|
1496 |
+
這個函數建立了一個細緻的噪音評估系統,考慮多個關鍵因素:
|
1497 |
+
1. 品種的基本吠叫傾向
|
1498 |
+
2. 居住環境對噪音的敏感度
|
1499 |
+
3. 吠叫的情境和原因
|
1500 |
+
4. 鄰居影響的考量
|
1501 |
+
5. 家庭成員的噪音承受度
|
1502 |
+
6. 訓練可能性的評估
|
1503 |
+
|
1504 |
+
特別注意:
|
1505 |
+
- 公寓環境的嚴格標準
|
1506 |
+
- 有幼童時的特殊考量
|
1507 |
+
- 獨處時間的影響
|
1508 |
+
- 品種的可訓練性
|
1509 |
+
|
1510 |
+
Parameters:
|
1511 |
+
-----------
|
1512 |
+
breed_info: 包含品種特性的字典,包括吠叫傾向和訓練難度
|
1513 |
+
user_prefs: 使用者偏好設定,包含噪音容忍度和環境因素
|
1514 |
+
|
1515 |
+
Returns:
|
1516 |
+
--------
|
1517 |
+
float: 0.0-1.0 之間的匹配分數,分數越高表示噪音特性越符合需求
|
1518 |
+
"""
|
1519 |
+
|
1520 |
+
# 提取基本資訊
|
1521 |
+
noise_level = breed_info.get('Noise Level', 'MODERATE').upper()
|
1522 |
+
barking_tendency = breed_info.get('Barking Tendency', 'MODERATE').upper()
|
1523 |
+
trainability = breed_info.get('Trainability', 'MODERATE').upper()
|
1524 |
+
temperament = breed_info.get('Temperament', '').lower()
|
1525 |
+
|
1526 |
+
# 基礎噪音評分矩陣 - 考慮環境和噪音容忍度
|
1527 |
+
base_noise_scores = {
|
1528 |
+
"LOW": {
|
1529 |
+
"apartment": {
|
1530 |
+
"low": 1.0, # 安靜的狗在公寓最理想
|
1531 |
+
"medium": 0.95,
|
1532 |
+
"high": 0.90
|
1533 |
+
},
|
1534 |
+
"house_small": {
|
1535 |
+
"low": 0.95,
|
1536 |
+
"medium": 0.90,
|
1537 |
+
"high": 0.85
|
1538 |
+
},
|
1539 |
+
"house_large": {
|
1540 |
+
"low": 0.90,
|
1541 |
+
"medium": 0.85,
|
1542 |
+
"high": 0.80 # 太安靜可能不夠警戒
|
1543 |
+
}
|
1544 |
},
|
1545 |
+
"MODERATE": {
|
1546 |
+
"apartment": {
|
1547 |
+
"low": 0.60,
|
1548 |
+
"medium": 0.80,
|
1549 |
+
"high": 0.85
|
1550 |
+
},
|
1551 |
+
"house_small": {
|
1552 |
+
"low": 0.70,
|
1553 |
+
"medium": 0.85,
|
1554 |
+
"high": 0.90
|
1555 |
+
},
|
1556 |
+
"house_large": {
|
1557 |
+
"low": 0.75,
|
1558 |
+
"medium": 0.90,
|
1559 |
+
"high": 0.95
|
1560 |
+
}
|
1561 |
},
|
1562 |
+
"HIGH": {
|
1563 |
+
"apartment": {
|
1564 |
+
"low": 0.20, # 吵鬧的狗在公寓極不適合
|
1565 |
+
"medium": 0.40,
|
1566 |
+
"high": 0.60
|
1567 |
+
},
|
1568 |
+
"house_small": {
|
1569 |
+
"low": 0.30,
|
1570 |
+
"medium": 0.50,
|
1571 |
+
"high": 0.70
|
1572 |
+
},
|
1573 |
+
"house_large": {
|
1574 |
+
"low": 0.40,
|
1575 |
+
"medium": 0.60,
|
1576 |
+
"high": 0.80
|
1577 |
+
}
|
1578 |
}
|
1579 |
}
|
1580 |
+
|
1581 |
+
# 取得基礎噪音分數
|
1582 |
+
base_score = base_noise_scores.get(noise_level, base_noise_scores["MODERATE"])\
|
1583 |
+
[user_prefs.living_space][user_prefs.noise_tolerance]
|
1584 |
+
|
1585 |
+
# 吠叫情境評估
|
1586 |
+
def evaluate_barking_context(temp: str, living_space: str) -> float:
|
1587 |
+
"""評估不同情境下的吠叫問題嚴重度"""
|
1588 |
+
context_score = 0
|
1589 |
+
|
1590 |
+
# 不同吠叫原因的權重
|
1591 |
+
barking_contexts = {
|
1592 |
+
'separation anxiety': {
|
1593 |
+
'apartment': -0.25,
|
1594 |
+
'house_small': -0.20,
|
1595 |
+
'house_large': -0.15
|
|
|
1596 |
},
|
1597 |
+
'territorial': {
|
1598 |
+
'apartment': -0.20,
|
1599 |
+
'house_small': -0.15,
|
1600 |
+
'house_large': -0.10
|
1601 |
+
},
|
1602 |
+
'alert barking': {
|
1603 |
+
'apartment': -0.15,
|
1604 |
+
'house_small': -0.10,
|
1605 |
+
'house_large': -0.05
|
1606 |
},
|
1607 |
+
'attention seeking': {
|
1608 |
+
'apartment': -0.15,
|
1609 |
+
'house_small': -0.10,
|
1610 |
+
'house_large': -0.08
|
1611 |
}
|
1612 |
}
|
1613 |
|
1614 |
+
for context, penalties in barking_contexts.items():
|
1615 |
+
if context in temp:
|
1616 |
+
context_score += penalties[living_space]
|
1617 |
+
|
1618 |
+
return context_score
|
1619 |
+
|
1620 |
+
# 計算吠叫情境的影響
|
1621 |
+
barking_context_adjustment = evaluate_barking_context(temperament, user_prefs.living_space)
|
1622 |
+
|
1623 |
+
# 訓練可能性評估
|
1624 |
+
trainability_adjustments = {
|
1625 |
+
"HIGH": 0.10, # 容易訓練可以改善吠叫問題
|
1626 |
+
"MODERATE": 0.05,
|
1627 |
+
"LOW": -0.05 # 難以訓練則較難改善
|
1628 |
+
}
|
1629 |
+
trainability_adjustment = trainability_adjustments.get(trainability, 0)
|
1630 |
+
|
1631 |
+
# 家庭環境考量
|
1632 |
+
family_adjustment = 0
|
1633 |
+
if user_prefs.has_children:
|
1634 |
+
child_age_factors = {
|
1635 |
+
'toddler': -0.20, # 幼童需要安靜環境
|
1636 |
+
'school_age': -0.15,
|
1637 |
+
'teenager': -0.10
|
1638 |
+
}
|
1639 |
+
family_adjustment = child_age_factors.get(user_prefs.children_age, -0.15)
|
1640 |
+
|
1641 |
+
# 根據噪音等級調整影響程度
|
1642 |
+
if noise_level == "HIGH":
|
1643 |
+
family_adjustment *= 1.5
|
1644 |
+
elif noise_level == "LOW":
|
1645 |
+
family_adjustment *= 0.5
|
1646 |
+
|
1647 |
+
# 獨處時間的影響
|
1648 |
+
alone_time_adjustment = 0
|
1649 |
+
if user_prefs.home_alone_time > 6:
|
1650 |
+
if 'separation anxiety' in temperament or noise_level == "HIGH":
|
1651 |
+
alone_time_adjustment = -0.15
|
1652 |
+
elif noise_level == "MODERATE":
|
1653 |
+
alone_time_adjustment = -0.10
|
1654 |
+
|
1655 |
+
# 鄰居影響評估(特別是公寓環境)
|
1656 |
+
neighbor_adjustment = 0
|
1657 |
+
if user_prefs.living_space == "apartment":
|
1658 |
+
if noise_level == "HIGH":
|
1659 |
+
neighbor_adjustment = -0.15
|
1660 |
+
elif noise_level == "MODERATE":
|
1661 |
+
neighbor_adjustment = -0.10
|
1662 |
+
|
1663 |
+
# 樓層因素
|
1664 |
+
if user_prefs.living_floor > 1:
|
1665 |
+
neighbor_adjustment -= min(0.10, (user_prefs.living_floor - 1) * 0.02)
|
1666 |
+
|
1667 |
+
# 整合所有評分因素
|
1668 |
+
final_score = base_score + barking_context_adjustment + trainability_adjustment + \
|
1669 |
+
family_adjustment + alone_time_adjustment + neighbor_adjustment
|
1670 |
+
|
1671 |
+
# 確保最終分數在合理範圍內
|
1672 |
+
return max(0.15, min(1.0, final_score))
|
1673 |
|
1674 |
|
1675 |
# 1. 計算基礎分數
|
|
|
1764 |
return min(0.2, adaptability_score)
|
1765 |
|
1766 |
|
1767 |
+
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1768 |
+
# """
|
1769 |
+
# 改進的品種相容性評分系統
|
1770 |
+
# 通過更細緻的特徵評估和動態權重調整,自然產生分數差異
|
1771 |
+
# """
|
1772 |
+
# # 評估關鍵特徵的匹配度,使用更極端的調整係數
|
1773 |
+
# def evaluate_key_features():
|
1774 |
+
# # 空間適配性評估
|
1775 |
+
# space_multiplier = 1.0
|
1776 |
+
# if user_prefs.living_space == 'apartment':
|
1777 |
+
# if breed_info['Size'] == 'Giant':
|
1778 |
+
# space_multiplier = 0.3 # 嚴重不適合
|
1779 |
+
# elif breed_info['Size'] == 'Large':
|
1780 |
+
# space_multiplier = 0.4 # 明顯不適合
|
1781 |
+
# elif breed_info['Size'] == 'Small':
|
1782 |
+
# space_multiplier = 1.4 # 明顯優勢
|
1783 |
|
1784 |
+
# # 運動需求評估
|
1785 |
+
# exercise_multiplier = 1.0
|
1786 |
+
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1787 |
+
# if exercise_needs == 'VERY HIGH':
|
1788 |
+
# if user_prefs.exercise_time < 60:
|
1789 |
+
# exercise_multiplier = 0.3 # 嚴重不足
|
1790 |
+
# elif user_prefs.exercise_time > 150:
|
1791 |
+
# exercise_multiplier = 1.5 # 完美匹配
|
1792 |
+
# elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
1793 |
+
# exercise_multiplier = 0.5 # 運動過度
|
1794 |
|
1795 |
+
# return space_multiplier, exercise_multiplier
|
1796 |
|
1797 |
+
# # 計算經驗匹配度
|
1798 |
+
# def evaluate_experience():
|
1799 |
+
# exp_multiplier = 1.0
|
1800 |
+
# care_level = breed_info.get('Care Level', 'MODERATE')
|
1801 |
|
1802 |
+
# if care_level == 'High':
|
1803 |
+
# if user_prefs.experience_level == 'beginner':
|
1804 |
+
# exp_multiplier = 0.4
|
1805 |
+
# elif user_prefs.experience_level == 'advanced':
|
1806 |
+
# exp_multiplier = 1.3
|
1807 |
+
# elif care_level == 'Low':
|
1808 |
+
# if user_prefs.experience_level == 'advanced':
|
1809 |
+
# exp_multiplier = 0.9 # 略微降低評分,因為可能不夠有挑戰性
|
1810 |
|
1811 |
+
# return exp_multiplier
|
1812 |
|
1813 |
+
# # 取得特徵調整係數
|
1814 |
+
# space_mult, exercise_mult = evaluate_key_features()
|
1815 |
+
# exp_mult = evaluate_experience()
|
1816 |
|
1817 |
+
# # 調整基礎分數
|
1818 |
+
# adjusted_scores = {
|
1819 |
+
# 'space': scores['space'] * space_mult,
|
1820 |
+
# 'exercise': scores['exercise'] * exercise_mult,
|
1821 |
+
# 'experience': scores['experience'] * exp_mult,
|
1822 |
+
# 'grooming': scores['grooming'],
|
1823 |
+
# 'health': scores['health'],
|
1824 |
+
# 'noise': scores['noise']
|
1825 |
+
# }
|
1826 |
|
1827 |
+
# # 計算加權平均,關鍵特徵佔更大權重
|
1828 |
+
# weights = {
|
1829 |
+
# 'space': 0.35,
|
1830 |
+
# 'exercise': 0.30,
|
1831 |
+
# 'experience': 0.20,
|
1832 |
+
# 'grooming': 0.15,
|
1833 |
+
# 'health': 0.10,
|
1834 |
+
# 'noise': 0.10
|
1835 |
+
# }
|
1836 |
|
1837 |
+
# # 動態調整權重
|
1838 |
+
# if user_prefs.living_space == 'apartment':
|
1839 |
+
# weights['space'] *= 1.5
|
1840 |
+
# weights['noise'] *= 1.3
|
1841 |
|
1842 |
+
# if abs(user_prefs.exercise_time - 120) > 60: # 運動時間極端情況
|
1843 |
+
# weights['exercise'] *= 1.4
|
1844 |
+
|
1845 |
+
# # 正規化權重
|
1846 |
+
# total_weight = sum(weights.values())
|
1847 |
+
# normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
1848 |
|
1849 |
+
# # 計算最終分數
|
1850 |
+
# final_score = sum(adjusted_scores[k] * normalized_weights[k] for k in scores.keys())
|
1851 |
+
|
1852 |
+
# # 品種特性加成
|
1853 |
+
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1854 |
+
|
1855 |
+
# # 整合最終分數,保持在0-1範圍內
|
1856 |
+
# return min(1.0, max(0.0, (final_score * 0.85) + (breed_bonus * 0.15)))
|
1857 |
|
|
|
|
|
1858 |
|
1859 |
+
def calculate_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1860 |
+
"""
|
1861 |
+
計算品種與使用者的整體相容性分數
|
1862 |
+
|
1863 |
+
這是推薦系統的核心評分函數,負責:
|
1864 |
+
1. 智能整合各面向評分
|
1865 |
+
2. 動態調整評分權重
|
1866 |
+
3. 處理關鍵條件的優先級
|
1867 |
+
4. 產生最終的匹配分數
|
1868 |
+
|
1869 |
+
評分策略:
|
1870 |
+
- 基礎分數:由各項指標的加權平均獲得
|
1871 |
+
- 動態權重:根據用戶情況動態調整各項權重
|
1872 |
+
- 關鍵條件:某些條件不滿足會顯著降低總分
|
1873 |
+
- 加成系統:特殊匹配會提供額外加分
|
1874 |
+
|
1875 |
+
Parameters:
|
1876 |
+
-----------
|
1877 |
+
scores: 包含各項評分的字典
|
1878 |
+
user_prefs: 使用者偏好設定
|
1879 |
+
breed_info: 品種特性信息
|
1880 |
+
|
1881 |
+
Returns:
|
1882 |
+
--------
|
1883 |
+
float: 60.0-95.0 之間的最終匹配分數
|
1884 |
+
"""
|
1885 |
+
def calculate_dynamic_weights() -> dict:
|
1886 |
+
"""計算動態權重分配"""
|
1887 |
+
# 基礎權重設定
|
1888 |
+
weights = {
|
1889 |
+
'space': 0.20,
|
1890 |
+
'exercise': 0.20,
|
1891 |
+
'experience': 0.15,
|
1892 |
+
'grooming': 0.15,
|
1893 |
+
'health': 0.15,
|
1894 |
+
'noise': 0.15
|
1895 |
+
}
|
1896 |
+
|
1897 |
+
# 公寓住戶權重調整
|
1898 |
+
if user_prefs.living_space == "apartment":
|
1899 |
+
weights['space'] *= 1.3
|
1900 |
+
weights['noise'] *= 1.3
|
1901 |
+
weights['exercise'] *= 0.8
|
1902 |
+
|
1903 |
+
# 有幼童時的權重調整
|
1904 |
+
if user_prefs.has_children and user_prefs.children_age == 'toddler':
|
1905 |
+
weights['experience'] *= 1.3
|
1906 |
+
weights['noise'] *= 1.2
|
1907 |
+
weights['health'] *= 1.2
|
1908 |
+
|
1909 |
+
# 新手飼主的權重調整
|
1910 |
+
if user_prefs.experience_level == 'beginner':
|
1911 |
+
weights['experience'] *= 1.4
|
1912 |
+
weights['health'] *= 1.2
|
1913 |
+
weights['grooming'] *= 1.2
|
1914 |
+
|
1915 |
+
# 健康敏感度的權重調整
|
1916 |
+
if user_prefs.health_sensitivity == 'high':
|
1917 |
+
weights['health'] *= 1.3
|
1918 |
+
|
1919 |
+
# 運動時間極端情況的權重調整
|
1920 |
+
if abs(user_prefs.exercise_time - 120) > 60:
|
1921 |
+
weights['exercise'] *= 1.3
|
1922 |
+
|
1923 |
+
# 正規化權重
|
1924 |
+
total = sum(weights.values())
|
1925 |
+
return {k: v/total for k, v in weights.items()}
|
1926 |
|
1927 |
+
def calculate_critical_factors() -> float:
|
1928 |
+
"""評估關鍵因素的影響"""
|
1929 |
+
critical_score = 1.0
|
1930 |
+
|
1931 |
+
# 空間關鍵條件
|
1932 |
+
if user_prefs.living_space == "apartment":
|
1933 |
+
if breed_info['Size'] == 'Giant':
|
1934 |
+
critical_score *= 0.7
|
1935 |
+
elif breed_info['Size'] == 'Large':
|
1936 |
+
critical_score *= 0.8
|
1937 |
+
|
1938 |
+
# 運動需求關鍵條件
|
1939 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1940 |
+
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
|
1941 |
+
critical_score *= 0.75
|
1942 |
+
elif exercise_needs == 'HIGH' and user_prefs.exercise_time < 45:
|
1943 |
+
critical_score *= 0.8
|
1944 |
+
|
1945 |
+
# 新手飼主關鍵條件
|
1946 |
+
if user_prefs.experience_level == 'beginner':
|
1947 |
+
if 'aggressive' in breed_info.get('Temperament', '').lower():
|
1948 |
+
critical_score *= 0.7
|
1949 |
+
elif 'dominant' in breed_info.get('Temperament', '').lower():
|
1950 |
+
critical_score *= 0.8
|
1951 |
+
|
1952 |
+
# 噪音關鍵條件
|
1953 |
+
if user_prefs.living_space == "apartment" and \
|
1954 |
+
breed_info.get('Noise Level', 'MODERATE').upper() == 'HIGH' and \
|
1955 |
+
user_prefs.noise_tolerance == 'low':
|
1956 |
+
critical_score *= 0.7
|
1957 |
+
|
1958 |
+
return critical_score
|
1959 |
|
1960 |
+
def calculate_bonus_factors() -> float:
|
1961 |
+
"""計算額外加分因素"""
|
1962 |
+
bonus = 1.0
|
1963 |
+
temperament = breed_info.get('Temperament', '').lower()
|
1964 |
+
|
1965 |
+
# 完美匹配加分
|
1966 |
+
perfect_matches = 0
|
1967 |
+
for score in scores.values():
|
1968 |
+
if score > 0.9:
|
1969 |
+
perfect_matches += 1
|
1970 |
+
|
1971 |
+
if perfect_matches >= 3:
|
1972 |
+
bonus += 0.05
|
1973 |
+
|
1974 |
+
# 特殊匹配加分
|
1975 |
+
if user_prefs.has_children and 'good with children' in temperament:
|
1976 |
+
bonus += 0.03
|
1977 |
+
|
1978 |
+
if user_prefs.living_space == "apartment" and 'adaptable' in temperament:
|
1979 |
+
bonus += 0.03
|
1980 |
+
|
1981 |
+
if user_prefs.experience_level == 'beginner' and 'easy to train' in temperament:
|
1982 |
+
bonus += 0.03
|
1983 |
+
|
1984 |
+
return min(1.15, bonus)
|
1985 |
+
|
1986 |
+
# 計算動態權重
|
1987 |
+
weights = calculate_dynamic_weights()
|
1988 |
+
|
1989 |
+
# 計算基礎加權分數
|
1990 |
+
base_score = sum(scores[k] * weights[k] for k in scores.keys())
|
1991 |
+
|
1992 |
+
# 應用關鍵因素
|
1993 |
+
critical_factor = calculate_critical_factors()
|
1994 |
+
|
1995 |
+
# 計算加分
|
1996 |
+
bonus_factor = calculate_bonus_factors()
|
1997 |
+
|
1998 |
+
# 計算最終原始分數
|
1999 |
+
raw_score = base_score * critical_factor * bonus_factor
|
2000 |
+
|
2001 |
+
# 轉���為最終分數(60-95範圍)
|
2002 |
+
final_score = 60 + (raw_score * 35)
|
2003 |
+
|
2004 |
+
# 確保分數在合理範圍內並保留兩位小數
|
2005 |
+
return round(max(60.0, min(95.0, final_score)), 2)
|
2006 |
+
|
2007 |
+
|
2008 |
+
# def amplify_score_extreme(score: float) -> float:
|
2009 |
+
# """
|
2010 |
+
# 改進的分數轉換函數
|
2011 |
+
# 提供更大的分數範圍和更明顯的差異
|
2012 |
+
|
2013 |
+
# 轉換邏輯:
|
2014 |
+
# - 極差匹配 (0.0-0.3) -> 60-68%
|
2015 |
+
# - 較差匹配 (0.3-0.5) -> 68-75%
|
2016 |
+
# - 中等匹配 (0.5-0.7) -> 75-85%
|
2017 |
+
# - 良好匹配 (0.7-0.85) -> 85-92%
|
2018 |
+
# - 優秀匹配 (0.85-1.0) -> 92-95%
|
2019 |
+
# """
|
2020 |
+
# if score < 0.3:
|
2021 |
+
# # 極差匹配:快速線性增長
|
2022 |
+
# return 0.60 + (score / 0.3) * 0.08
|
2023 |
+
# elif score < 0.5:
|
2024 |
+
# # 較差匹配:緩慢增長
|
2025 |
+
# position = (score - 0.3) / 0.2
|
2026 |
+
# return 0.68 + position * 0.07
|
2027 |
+
# elif score < 0.7:
|
2028 |
+
# # 中等匹配:穩定線性增長
|
2029 |
+
# position = (score - 0.5) / 0.2
|
2030 |
+
# return 0.75 + position * 0.10
|
2031 |
+
# elif score < 0.85:
|
2032 |
+
# # 良好匹配:加速增長
|
2033 |
+
# position = (score - 0.7) / 0.15
|
2034 |
+
# return 0.85 + position * 0.07
|
2035 |
+
# else:
|
2036 |
+
# # 優秀匹配:最後衝刺
|
2037 |
+
# position = (score - 0.85) / 0.15
|
2038 |
+
# return 0.92 + position * 0.03
|
2039 |
+
|
2040 |
|
2041 |
def amplify_score_extreme(score: float) -> float:
|
2042 |
"""
|
2043 |
+
將原始相容性分數(0-1)轉換為最終評分(60-95)
|
2044 |
+
|
2045 |
+
這個函數負責:
|
2046 |
+
1. 將內部計算的原始分數轉換為更有意義的最終分數
|
2047 |
+
2. 確保分數分布更自然且有區別性
|
2048 |
+
3. 突出極佳和極差的匹配
|
2049 |
+
4. 避免分數過度集中在中間區域
|
2050 |
+
|
2051 |
+
轉換策略:
|
2052 |
+
- 極佳匹配(0.85-1.0):轉換為 90-95 分
|
2053 |
+
- 優良匹配(0.70-0.85):轉換為 85-90 分
|
2054 |
+
- 良好匹配(0.55-0.70):轉換為 75-85 分
|
2055 |
+
- 一般匹配(0.40-0.55):轉換為 70-75 分
|
2056 |
+
- 勉強匹配(0.25-0.40):轉換為 65-70 分
|
2057 |
+
- 不推薦匹配(0-0.25):轉換為 60-65 分
|
2058 |
+
|
2059 |
+
Parameters:
|
2060 |
+
-----------
|
2061 |
+
score: 原始相容性分數(0.0-1.0)
|
2062 |
+
|
2063 |
+
Returns:
|
2064 |
+
--------
|
2065 |
+
float: 轉換後的最終分數(60.0-95.0)
|
2066 |
"""
|
2067 |
+
# 使用分段函數進行更自然的轉換
|
2068 |
+
if score >= 0.85:
|
2069 |
+
# 極佳匹配:90-95分
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2070 |
position = (score - 0.85) / 0.15
|
2071 |
+
return 90.0 + (position * 5.0)
|
2072 |
+
elif score >= 0.70:
|
2073 |
+
# 優良匹配:85-90分
|
2074 |
+
position = (score - 0.70) / 0.15
|
2075 |
+
return 85.0 + (position * 5.0)
|
2076 |
+
elif score >= 0.55:
|
2077 |
+
# 良好匹配:75-85分
|
2078 |
+
position = (score - 0.55) / 0.15
|
2079 |
+
return 75.0 + (position * 10.0)
|
2080 |
+
elif score >= 0.40:
|
2081 |
+
# 一般匹配:70-75分
|
2082 |
+
position = (score - 0.40) / 0.15
|
2083 |
+
return 70.0 + (position * 5.0)
|
2084 |
+
elif score >= 0.25:
|
2085 |
+
# 勉強匹配:65-70分
|
2086 |
+
position = (score - 0.25) / 0.15
|
2087 |
+
return 65.0 + (position * 5.0)
|
2088 |
+
else:
|
2089 |
+
# 不推薦匹配:60-65分
|
2090 |
+
position = score / 0.25
|
2091 |
+
return 60.0 + (position * 5.0)
|