Spaces:
Sleeping
Sleeping
Update smart_breed_matcher.py
Browse files- smart_breed_matcher.py +55 -6
smart_breed_matcher.py
CHANGED
@@ -245,37 +245,86 @@ class SmartBreedMatcher:
|
|
245 |
|
246 |
return similarity
|
247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
def _general_matching(self, description: str, top_n: int = 10) -> List[Dict]:
|
249 |
-
"""
|
250 |
matches = []
|
251 |
for breed in self.dog_data:
|
252 |
breed_name = breed[1]
|
253 |
breed_description = breed[9]
|
254 |
temperament = breed[4]
|
255 |
|
256 |
-
#
|
257 |
desc_embedding = self.model.encode(description)
|
258 |
breed_desc_embedding = self.model.encode(breed_description)
|
259 |
breed_temp_embedding = self.model.encode(temperament)
|
260 |
|
261 |
-
# 計算描述和性格的相似度
|
262 |
desc_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_desc_embedding))
|
263 |
temp_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_temp_embedding))
|
264 |
|
265 |
-
#
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
matches.append({
|
269 |
'breed': breed_name,
|
270 |
'score': final_score,
|
271 |
'is_preferred': False,
|
272 |
'similarity': final_score,
|
273 |
-
'reason': "Matched based on
|
274 |
})
|
275 |
|
276 |
# 排序並返回前 N 個匹配結果
|
277 |
return sorted(matches, key=lambda x: -x['score'])[:top_n]
|
278 |
|
|
|
279 |
def match_user_preference(self, description: str, top_n: int = 10) -> List[Dict]:
|
280 |
"""根據用戶描述匹配最適合的品種"""
|
281 |
preferred_breed = self._detect_breed_preference(description)
|
|
|
245 |
|
246 |
return similarity
|
247 |
|
248 |
+
# def _general_matching(self, description: str, top_n: int = 10) -> List[Dict]:
|
249 |
+
# """基本的品種匹配邏輯"""
|
250 |
+
# matches = []
|
251 |
+
# for breed in self.dog_data:
|
252 |
+
# breed_name = breed[1]
|
253 |
+
# breed_description = breed[9]
|
254 |
+
# temperament = breed[4]
|
255 |
+
|
256 |
+
# # 計算相似度
|
257 |
+
# desc_embedding = self.model.encode(description)
|
258 |
+
# breed_desc_embedding = self.model.encode(breed_description)
|
259 |
+
# breed_temp_embedding = self.model.encode(temperament)
|
260 |
+
|
261 |
+
# # 計算描述和性格的相似度
|
262 |
+
# desc_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_desc_embedding))
|
263 |
+
# temp_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_temp_embedding))
|
264 |
+
|
265 |
+
# # 結合分數
|
266 |
+
# final_score = (desc_similarity * 0.6 + temp_similarity * 0.4)
|
267 |
+
|
268 |
+
# matches.append({
|
269 |
+
# 'breed': breed_name,
|
270 |
+
# 'score': final_score,
|
271 |
+
# 'is_preferred': False,
|
272 |
+
# 'similarity': final_score,
|
273 |
+
# 'reason': "Matched based on general description and temperament"
|
274 |
+
# })
|
275 |
+
|
276 |
+
# # 排序並返回前 N 個匹配結果
|
277 |
+
# return sorted(matches, key=lambda x: -x['score'])[:top_n]
|
278 |
+
|
279 |
def _general_matching(self, description: str, top_n: int = 10) -> List[Dict]:
|
280 |
+
"""基本的品種匹配邏輯,考慮描述、性格、噪音和健康因素"""
|
281 |
matches = []
|
282 |
for breed in self.dog_data:
|
283 |
breed_name = breed[1]
|
284 |
breed_description = breed[9]
|
285 |
temperament = breed[4]
|
286 |
|
287 |
+
# 計算描述文本和性格的相似度
|
288 |
desc_embedding = self.model.encode(description)
|
289 |
breed_desc_embedding = self.model.encode(breed_description)
|
290 |
breed_temp_embedding = self.model.encode(temperament)
|
291 |
|
|
|
292 |
desc_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_desc_embedding))
|
293 |
temp_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_temp_embedding))
|
294 |
|
295 |
+
# 計算噪音相似度和健康分數
|
296 |
+
noise_similarity = self._calculate_noise_similarity(breed_name, breed_name)
|
297 |
+
health_score = self._calculate_health_score(breed_name)
|
298 |
+
health_similarity = 1.0 - abs(health_score - 0.8) # 假設理想健康分數為 0.8
|
299 |
+
|
300 |
+
# 加權計算分數
|
301 |
+
weights = {
|
302 |
+
'description': 0.35,
|
303 |
+
'temperament': 0.25,
|
304 |
+
'noise': 0.2,
|
305 |
+
'health': 0.2
|
306 |
+
}
|
307 |
+
|
308 |
+
# 計算最終分數
|
309 |
+
final_score = (
|
310 |
+
desc_similarity * weights['description'] +
|
311 |
+
temp_similarity * weights['temperament'] +
|
312 |
+
noise_similarity * weights['noise'] +
|
313 |
+
health_similarity * weights['health']
|
314 |
+
)
|
315 |
|
316 |
matches.append({
|
317 |
'breed': breed_name,
|
318 |
'score': final_score,
|
319 |
'is_preferred': False,
|
320 |
'similarity': final_score,
|
321 |
+
'reason': "Matched based on description, temperament, noise level, and health score"
|
322 |
})
|
323 |
|
324 |
# 排序並返回前 N 個匹配結果
|
325 |
return sorted(matches, key=lambda x: -x['score'])[:top_n]
|
326 |
|
327 |
+
|
328 |
def match_user_preference(self, description: str, top_n: int = 10) -> List[Dict]:
|
329 |
"""根據用戶描述匹配最適合的品種"""
|
330 |
preferred_breed = self._detect_breed_preference(description)
|