Spaces:
Running
Running
Delete smart_breed_matcher.py
Browse files- smart_breed_matcher.py +0 -1001
smart_breed_matcher.py
DELETED
@@ -1,1001 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import re
|
3 |
-
import numpy as np
|
4 |
-
import spaces
|
5 |
-
from typing import List, Dict, Tuple, Optional
|
6 |
-
from dataclasses import dataclass
|
7 |
-
from breed_health_info import breed_health_info
|
8 |
-
from breed_noise_info import breed_noise_info
|
9 |
-
from dog_database import dog_data
|
10 |
-
from scoring_calculation_system import UserPreferences
|
11 |
-
from sentence_transformers import SentenceTransformer, util
|
12 |
-
from functools import wraps
|
13 |
-
|
14 |
-
def gpu_init_wrapper(func):
|
15 |
-
@spaces.GPU
|
16 |
-
@wraps(func)
|
17 |
-
def wrapper(*args, **kwargs):
|
18 |
-
return func(*args, **kwargs)
|
19 |
-
return wrapper
|
20 |
-
|
21 |
-
def safe_prediction(func):
|
22 |
-
"""錯誤處理裝飾器,提供 GPU 到 CPU 的降級機制"""
|
23 |
-
@wraps(func)
|
24 |
-
def wrapper(*args, **kwargs):
|
25 |
-
try:
|
26 |
-
return func(*args, **kwargs)
|
27 |
-
except RuntimeError as e:
|
28 |
-
if "CUDA" in str(e):
|
29 |
-
print("GPU 操作失敗,嘗試使用 CPU")
|
30 |
-
return func(*args, **kwargs)
|
31 |
-
raise
|
32 |
-
return wrapper
|
33 |
-
|
34 |
-
class SmartBreedMatcher:
|
35 |
-
|
36 |
-
def __init__(self, dog_data: List[Tuple]):
|
37 |
-
self.dog_data = dog_data
|
38 |
-
self.model = None
|
39 |
-
self._embedding_cache = {}
|
40 |
-
self._clear_cache()
|
41 |
-
|
42 |
-
def _initialize_model(self):
|
43 |
-
"""延遲初始化模型,只在需要時才創建"""
|
44 |
-
if self.model is None:
|
45 |
-
self.model = SentenceTransformer('all-mpnet-base-v2')
|
46 |
-
|
47 |
-
def _clear_cache(self):
|
48 |
-
self._embedding_cache = {}
|
49 |
-
|
50 |
-
|
51 |
-
@spaces.GPU
|
52 |
-
def _get_cached_embedding(self, text: str) -> torch.Tensor:
|
53 |
-
"""使用 GPU 裝飾器確保在正確的時機初始化 CUDA"""
|
54 |
-
if self.model is None:
|
55 |
-
self._initialize_model()
|
56 |
-
|
57 |
-
if text not in self._embedding_cache:
|
58 |
-
self._embedding_cache[text] = self.model.encode(text)
|
59 |
-
return self._embedding_cache[text]
|
60 |
-
|
61 |
-
def _categorize_breeds(self) -> Dict:
|
62 |
-
"""自動將狗品種分類"""
|
63 |
-
categories = {
|
64 |
-
'working_dogs': [],
|
65 |
-
'herding_dogs': [],
|
66 |
-
'hunting_dogs': [],
|
67 |
-
'companion_dogs': [],
|
68 |
-
'guard_dogs': []
|
69 |
-
}
|
70 |
-
|
71 |
-
for breed_info in self.dog_data:
|
72 |
-
description = breed_info[9].lower()
|
73 |
-
temperament = breed_info[4].lower()
|
74 |
-
|
75 |
-
# 根據描述和性格特徵自動分類
|
76 |
-
if any(word in description for word in ['herding', 'shepherd', 'cattle', 'flock']):
|
77 |
-
categories['herding_dogs'].append(breed_info[1])
|
78 |
-
elif any(word in description for word in ['hunting', 'hunt', 'retriever', 'pointer']):
|
79 |
-
categories['hunting_dogs'].append(breed_info[1])
|
80 |
-
elif any(word in description for word in ['companion', 'toy', 'family', 'lap']):
|
81 |
-
categories['companion_dogs'].append(breed_info[1])
|
82 |
-
elif any(word in description for word in ['guard', 'protection', 'watchdog']):
|
83 |
-
categories['guard_dogs'].append(breed_info[1])
|
84 |
-
elif any(word in description for word in ['working', 'draft', 'cart']):
|
85 |
-
categories['working_dogs'].append(breed_info[1])
|
86 |
-
|
87 |
-
return categories
|
88 |
-
|
89 |
-
def find_similar_breeds(self, breed_name: str, top_n: int = 5) -> List[Tuple[str, float]]:
|
90 |
-
"""
|
91 |
-
找出與指定品種最相似的其他品種
|
92 |
-
|
93 |
-
Args:
|
94 |
-
breed_name: 目標品種名稱
|
95 |
-
top_n: 返回的相似品種數量
|
96 |
-
|
97 |
-
Returns:
|
98 |
-
List[Tuple[str, float]]: 相似品種列表,包含品種名稱和相似度分數
|
99 |
-
"""
|
100 |
-
try:
|
101 |
-
if self.model is None:
|
102 |
-
self._initialize_model()
|
103 |
-
target_breed = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
|
104 |
-
if not target_breed:
|
105 |
-
return []
|
106 |
-
|
107 |
-
# 獲取完整的目標品種特徵
|
108 |
-
target_features = {
|
109 |
-
'breed_name': target_breed[1],
|
110 |
-
'size': target_breed[2],
|
111 |
-
'temperament': target_breed[4],
|
112 |
-
'exercise': target_breed[7],
|
113 |
-
'grooming': target_breed[8],
|
114 |
-
'description': target_breed[9],
|
115 |
-
'good_with_children': target_breed[6] # 添加這個特徵
|
116 |
-
}
|
117 |
-
|
118 |
-
similarities = []
|
119 |
-
for breed in self.dog_data:
|
120 |
-
if breed[1] != breed_name:
|
121 |
-
breed_features = {
|
122 |
-
'breed_name': breed[1],
|
123 |
-
'size': breed[2],
|
124 |
-
'temperament': breed[4],
|
125 |
-
'exercise': breed[7],
|
126 |
-
'grooming': breed[8],
|
127 |
-
'description': breed[9],
|
128 |
-
'good_with_children': breed[6] # 添加這個特徵
|
129 |
-
}
|
130 |
-
|
131 |
-
try:
|
132 |
-
similarity_score = self._calculate_breed_similarity(target_features, breed_features)
|
133 |
-
# 確保分數在有效範圍內
|
134 |
-
similarity_score = min(1.0, max(0.0, similarity_score))
|
135 |
-
similarities.append((breed[1], similarity_score))
|
136 |
-
except Exception as e:
|
137 |
-
print(f"Error calculating similarity for {breed[1]}: {str(e)}")
|
138 |
-
continue
|
139 |
-
|
140 |
-
# 根據相似度排序並返回前N個
|
141 |
-
return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_n]
|
142 |
-
|
143 |
-
except Exception as e:
|
144 |
-
print(f"Error in find_similar_breeds: {str(e)}")
|
145 |
-
return []
|
146 |
-
|
147 |
-
|
148 |
-
def _calculate_breed_similarity(self, breed1_features: Dict, breed2_features: Dict, weights: Dict[str, float]) -> float:
|
149 |
-
try:
|
150 |
-
# 1. 基礎相似度計算
|
151 |
-
size_similarity = self._calculate_size_similarity_enhanced(
|
152 |
-
breed1_features.get('size', 'Medium'),
|
153 |
-
breed2_features.get('size', 'Medium'),
|
154 |
-
breed2_features.get('description', '')
|
155 |
-
)
|
156 |
-
|
157 |
-
exercise_similarity = self._calculate_exercise_similarity_enhanced(
|
158 |
-
breed1_features.get('exercise', 'Moderate'),
|
159 |
-
breed2_features.get('exercise', 'Moderate')
|
160 |
-
)
|
161 |
-
|
162 |
-
# 性格相似度
|
163 |
-
temp1_embedding = self._get_cached_embedding(breed1_features.get('temperament', ''))
|
164 |
-
temp2_embedding = self._get_cached_embedding(breed2_features.get('temperament', ''))
|
165 |
-
temperament_similarity = float(util.pytorch_cos_sim(temp1_embedding, temp2_embedding))
|
166 |
-
|
167 |
-
# 其他相似度
|
168 |
-
grooming_similarity = self._calculate_grooming_similarity(
|
169 |
-
breed1_features.get('breed_name', ''),
|
170 |
-
breed2_features.get('breed_name', '')
|
171 |
-
)
|
172 |
-
|
173 |
-
health_similarity = self._calculate_health_score_similarity(
|
174 |
-
breed1_features.get('breed_name', ''),
|
175 |
-
breed2_features.get('breed_name', '')
|
176 |
-
)
|
177 |
-
|
178 |
-
noise_similarity = self._calculate_noise_similarity(
|
179 |
-
breed1_features.get('breed_name', ''),
|
180 |
-
breed2_features.get('breed_name', '')
|
181 |
-
)
|
182 |
-
|
183 |
-
# 2. 關鍵特徵評分
|
184 |
-
feature_scores = {}
|
185 |
-
for feature, similarity in {
|
186 |
-
'size': size_similarity,
|
187 |
-
'exercise': exercise_similarity,
|
188 |
-
'temperament': temperament_similarity,
|
189 |
-
'grooming': grooming_similarity,
|
190 |
-
'health': health_similarity,
|
191 |
-
'noise': noise_similarity
|
192 |
-
}.items():
|
193 |
-
# 根據權重調整每個特徵分數
|
194 |
-
importance = weights.get(feature, 0.1)
|
195 |
-
if importance > 0.3: # 高權重特徵
|
196 |
-
if similarity < 0.5: # 若關鍵特徵匹配度低
|
197 |
-
feature_scores[feature] = similarity * 0.5 # 大幅降低分數
|
198 |
-
else:
|
199 |
-
feature_scores[feature] = similarity * 1.2 # 提高匹配度好的分數
|
200 |
-
else: # 一般特徵
|
201 |
-
feature_scores[feature] = similarity
|
202 |
-
|
203 |
-
# 3. 計算最終相似度
|
204 |
-
weighted_sum = 0
|
205 |
-
weight_sum = 0
|
206 |
-
for feature, score in feature_scores.items():
|
207 |
-
feature_weight = weights.get(feature, 0.1)
|
208 |
-
weighted_sum += score * feature_weight
|
209 |
-
weight_sum += feature_weight
|
210 |
-
|
211 |
-
final_similarity = weighted_sum / weight_sum if weight_sum > 0 else 0.5
|
212 |
-
|
213 |
-
return min(1.0, max(0.2, final_similarity)) # 設定最低分數為0.2
|
214 |
-
|
215 |
-
except Exception as e:
|
216 |
-
print(f"Error in calculate_breed_similarity: {str(e)}")
|
217 |
-
return 0.5
|
218 |
-
|
219 |
-
def get_breed_characteristics_score(self, breed_features: Dict, description: str) -> float:
|
220 |
-
score = 1.0
|
221 |
-
description_lower = description.lower()
|
222 |
-
breed_score_multipliers = []
|
223 |
-
|
224 |
-
# 運動需求評估
|
225 |
-
exercise_needs = breed_features.get('exercise', 'Moderate')
|
226 |
-
exercise_keywords = ['active', 'running', 'energetic', 'athletic']
|
227 |
-
if any(keyword in description_lower for keyword in exercise_keywords):
|
228 |
-
multipliers = {
|
229 |
-
'Very High': 1.5,
|
230 |
-
'High': 1.3,
|
231 |
-
'Moderate': 0.7,
|
232 |
-
'Low': 0.4
|
233 |
-
}
|
234 |
-
breed_score_multipliers.append(multipliers.get(exercise_needs, 1.0))
|
235 |
-
|
236 |
-
# 體型評估
|
237 |
-
size = breed_features.get('size', 'Medium')
|
238 |
-
if 'apartment' in description_lower:
|
239 |
-
size_multipliers = {
|
240 |
-
'Giant': 0.3,
|
241 |
-
'Large': 0.6,
|
242 |
-
'Medium-Large': 0.8,
|
243 |
-
'Medium': 1.4,
|
244 |
-
'Small': 1.0,
|
245 |
-
'Tiny': 0.9
|
246 |
-
}
|
247 |
-
breed_score_multipliers.append(size_multipliers.get(size, 1.0))
|
248 |
-
elif 'house' in description_lower:
|
249 |
-
size_multipliers = {
|
250 |
-
'Giant': 0.8,
|
251 |
-
'Large': 1.2,
|
252 |
-
'Medium-Large': 1.3,
|
253 |
-
'Medium': 1.2,
|
254 |
-
'Small': 0.9,
|
255 |
-
'Tiny': 0.7
|
256 |
-
}
|
257 |
-
breed_score_multipliers.append(size_multipliers.get(size, 1.0))
|
258 |
-
|
259 |
-
# 家庭適應性評估
|
260 |
-
if any(keyword in description_lower for keyword in ['family', 'children', 'kids']):
|
261 |
-
good_with_children = breed_features.get('good_with_children', False)
|
262 |
-
breed_score_multipliers.append(1.3 if good_with_children else 0.6)
|
263 |
-
|
264 |
-
# 噪音評估
|
265 |
-
if 'quiet' in description_lower:
|
266 |
-
noise_level = breed_features.get('noise_level', 'Moderate')
|
267 |
-
noise_multipliers = {
|
268 |
-
'Low': 1.3,
|
269 |
-
'Moderate': 0.9,
|
270 |
-
'High': 0.5
|
271 |
-
}
|
272 |
-
breed_score_multipliers.append(noise_multipliers.get(noise_level, 1.0))
|
273 |
-
|
274 |
-
# 應用所有乘數
|
275 |
-
for multiplier in breed_score_multipliers:
|
276 |
-
score *= multiplier
|
277 |
-
|
278 |
-
# 確保分數在合理範圍內
|
279 |
-
return min(1.5, max(0.3, score))
|
280 |
-
|
281 |
-
def _calculate_size_similarity_enhanced(self, size1: str, size2: str, description: str) -> float:
|
282 |
-
"""
|
283 |
-
增強版尺寸相似度計算
|
284 |
-
"""
|
285 |
-
try:
|
286 |
-
# 更細緻的尺寸映射
|
287 |
-
size_map = {
|
288 |
-
'Tiny': 0,
|
289 |
-
'Small': 1,
|
290 |
-
'Small-Medium': 2,
|
291 |
-
'Medium': 3,
|
292 |
-
'Medium-Large': 4,
|
293 |
-
'Large': 5,
|
294 |
-
'Giant': 6
|
295 |
-
}
|
296 |
-
|
297 |
-
# 標準化並獲取數值
|
298 |
-
value1 = size_map.get(self._normalize_size(size1), 3)
|
299 |
-
value2 = size_map.get(self._normalize_size(size2), 3)
|
300 |
-
|
301 |
-
# 基礎相似度計算
|
302 |
-
base_similarity = 1.0 - (abs(value1 - value2) / 6.0)
|
303 |
-
|
304 |
-
# 環境適應性調整
|
305 |
-
if 'apartment' in description.lower():
|
306 |
-
if size2 in ['Large', 'Giant']:
|
307 |
-
base_similarity *= 0.7 # 大型犬在公寓降低相似度
|
308 |
-
elif size2 in ['Medium', 'Medium-Large']:
|
309 |
-
base_similarity *= 1.2 # 中型犬更適合
|
310 |
-
elif size2 in ['Small', 'Tiny']:
|
311 |
-
base_similarity *= 0.8 # 過小的狗也不是最佳選擇
|
312 |
-
|
313 |
-
return min(1.0, base_similarity)
|
314 |
-
except Exception as e:
|
315 |
-
print(f"Error in calculate_size_similarity_enhanced: {str(e)}")
|
316 |
-
return 0.5
|
317 |
-
|
318 |
-
def _normalize_size(self, size: str) -> str:
|
319 |
-
"""
|
320 |
-
標準化犬種尺寸分類
|
321 |
-
|
322 |
-
Args:
|
323 |
-
size: 原始尺寸描述
|
324 |
-
|
325 |
-
Returns:
|
326 |
-
str: 標準化後的尺寸類別
|
327 |
-
"""
|
328 |
-
try:
|
329 |
-
size = size.lower()
|
330 |
-
if 'tiny' in size:
|
331 |
-
return 'Tiny'
|
332 |
-
elif 'small' in size and 'medium' in size:
|
333 |
-
return 'Small-Medium'
|
334 |
-
elif 'small' in size:
|
335 |
-
return 'Small'
|
336 |
-
elif 'medium' in size and 'large' in size:
|
337 |
-
return 'Medium-Large'
|
338 |
-
elif 'medium' in size:
|
339 |
-
return 'Medium'
|
340 |
-
elif 'giant' in size:
|
341 |
-
return 'Giant'
|
342 |
-
elif 'large' in size:
|
343 |
-
return 'Large'
|
344 |
-
return 'Medium' # 默認為 Medium
|
345 |
-
except Exception as e:
|
346 |
-
print(f"Error in normalize_size: {str(e)}")
|
347 |
-
return 'Medium'
|
348 |
-
|
349 |
-
def _calculate_exercise_similarity_enhanced(self, exercise1: str, exercise2: str) -> float:
|
350 |
-
try:
|
351 |
-
exercise_values = {
|
352 |
-
'Very High': 4,
|
353 |
-
'High': 3,
|
354 |
-
'Moderate': 2,
|
355 |
-
'Low': 1
|
356 |
-
}
|
357 |
-
|
358 |
-
value1 = exercise_values.get(exercise1, 2)
|
359 |
-
value2 = exercise_values.get(exercise2, 2)
|
360 |
-
|
361 |
-
# 計算差異
|
362 |
-
diff = abs(value1 - value2)
|
363 |
-
|
364 |
-
if diff == 0:
|
365 |
-
return 1.0
|
366 |
-
elif diff == 1:
|
367 |
-
return 0.7
|
368 |
-
elif diff == 2:
|
369 |
-
return 0.4
|
370 |
-
else:
|
371 |
-
return 0.2
|
372 |
-
|
373 |
-
except Exception as e:
|
374 |
-
print(f"Error in calculate_exercise_similarity_enhanced: {str(e)}")
|
375 |
-
return 0.5
|
376 |
-
|
377 |
-
def _calculate_grooming_similarity(self, breed1: str, breed2: str) -> float:
|
378 |
-
"""
|
379 |
-
計算美容需求相似度
|
380 |
-
|
381 |
-
Args:
|
382 |
-
breed1: 第一個品種名稱
|
383 |
-
breed2: 第二個品種名稱
|
384 |
-
|
385 |
-
Returns:
|
386 |
-
float: 相似度分數 (0-1)
|
387 |
-
"""
|
388 |
-
try:
|
389 |
-
grooming_map = {
|
390 |
-
'Low': 1,
|
391 |
-
'Moderate': 2,
|
392 |
-
'High': 3
|
393 |
-
}
|
394 |
-
|
395 |
-
# 從dog_data中獲取美容需求
|
396 |
-
breed1_info = next((dog for dog in self.dog_data if dog[1] == breed1), None)
|
397 |
-
breed2_info = next((dog for dog in self.dog_data if dog[1] == breed2), None)
|
398 |
-
|
399 |
-
if not breed1_info or not breed2_info:
|
400 |
-
return 0.5 # 數據缺失時返回中等相似度
|
401 |
-
|
402 |
-
grooming1 = breed1_info[8] # Grooming_Needs index
|
403 |
-
grooming2 = breed2_info[8]
|
404 |
-
|
405 |
-
# 獲取數值,默認為 Moderate
|
406 |
-
value1 = grooming_map.get(grooming1, 2)
|
407 |
-
value2 = grooming_map.get(grooming2, 2)
|
408 |
-
|
409 |
-
# 基礎相似度計算
|
410 |
-
base_similarity = 1.0 - (abs(value1 - value2) / 2.0)
|
411 |
-
|
412 |
-
# 美容需求調整
|
413 |
-
if grooming2 == 'Moderate':
|
414 |
-
base_similarity *= 1.1 # 中等美容需求略微加分
|
415 |
-
elif grooming2 == 'High':
|
416 |
-
base_similarity *= 0.9 # 高美容需求略微降分
|
417 |
-
|
418 |
-
return min(1.0, base_similarity)
|
419 |
-
except Exception as e:
|
420 |
-
print(f"Error in calculate_grooming_similarity: {str(e)}")
|
421 |
-
return 0.5
|
422 |
-
|
423 |
-
def _calculate_health_score_similarity(self, breed1: str, breed2: str) -> float:
|
424 |
-
"""
|
425 |
-
計算兩個品種的健康評分相似度
|
426 |
-
"""
|
427 |
-
try:
|
428 |
-
score1 = self._calculate_health_score(breed1)
|
429 |
-
score2 = self._calculate_health_score(breed2)
|
430 |
-
return 1.0 - abs(score1 - score2)
|
431 |
-
except Exception as e:
|
432 |
-
print(f"Error in calculate_health_score_similarity: {str(e)}")
|
433 |
-
return 0.5
|
434 |
-
|
435 |
-
def _calculate_health_score(self, breed_name: str) -> float:
|
436 |
-
"""
|
437 |
-
計算品種的健康評分
|
438 |
-
|
439 |
-
Args:
|
440 |
-
breed_name: 品種名稱
|
441 |
-
|
442 |
-
Returns:
|
443 |
-
float: 健康評分 (0-1)
|
444 |
-
"""
|
445 |
-
try:
|
446 |
-
if breed_name not in breed_health_info:
|
447 |
-
return 0.5
|
448 |
-
|
449 |
-
health_notes = breed_health_info[breed_name]['health_notes'].lower()
|
450 |
-
|
451 |
-
# 嚴重健康問題
|
452 |
-
severe_conditions = [
|
453 |
-
'cancer', 'cardiomyopathy', 'epilepsy', 'dysplasia',
|
454 |
-
'bloat', 'progressive', 'syndrome'
|
455 |
-
]
|
456 |
-
|
457 |
-
# 中等健康問題
|
458 |
-
moderate_conditions = [
|
459 |
-
'allergies', 'infections', 'thyroid', 'luxation',
|
460 |
-
'skin problems', 'ear'
|
461 |
-
]
|
462 |
-
|
463 |
-
# 計算問題數量
|
464 |
-
severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
|
465 |
-
moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)
|
466 |
-
|
467 |
-
# 基礎健康評分
|
468 |
-
health_score = 1.0
|
469 |
-
health_score -= (severe_count * 0.15) # 嚴重問題扣分更多
|
470 |
-
health_score -= (moderate_count * 0.05) # 中等問題扣分較少
|
471 |
-
|
472 |
-
# 確保評分在合理範圍內
|
473 |
-
return max(0.3, min(1.0, health_score))
|
474 |
-
except Exception as e:
|
475 |
-
print(f"Error in calculate_health_score: {str(e)}")
|
476 |
-
return 0.5
|
477 |
-
|
478 |
-
|
479 |
-
def _calculate_noise_similarity(self, breed1: str, breed2: str) -> float:
|
480 |
-
"""計算兩個品種的噪音相似度"""
|
481 |
-
noise_levels = {
|
482 |
-
'Low': 1,
|
483 |
-
'Moderate': 2,
|
484 |
-
'High': 3,
|
485 |
-
'Unknown': 2 # 默認為中等
|
486 |
-
}
|
487 |
-
|
488 |
-
noise1 = breed_noise_info.get(breed1, {}).get('noise_level', 'Unknown')
|
489 |
-
noise2 = breed_noise_info.get(breed2, {}).get('noise_level', 'Unknown')
|
490 |
-
|
491 |
-
# 獲取數值級別
|
492 |
-
level1 = noise_levels.get(noise1, 2)
|
493 |
-
level2 = noise_levels.get(noise2, 2)
|
494 |
-
|
495 |
-
# 計算差異並歸一化
|
496 |
-
difference = abs(level1 - level2)
|
497 |
-
similarity = 1.0 - (difference / 2) # 最大差異是2,所以除以2來歸一化
|
498 |
-
|
499 |
-
return similarity
|
500 |
-
|
501 |
-
# bonus score zone
|
502 |
-
def _calculate_size_bonus(self, size: str, living_space: str) -> float:
|
503 |
-
"""
|
504 |
-
計算尺寸匹配的獎勵分數
|
505 |
-
|
506 |
-
Args:
|
507 |
-
size: 品種尺寸
|
508 |
-
living_space: 居住空間類型
|
509 |
-
|
510 |
-
Returns:
|
511 |
-
float: 獎勵分數 (-0.25 到 0.15)
|
512 |
-
"""
|
513 |
-
try:
|
514 |
-
if living_space == "apartment":
|
515 |
-
size_scores = {
|
516 |
-
'Tiny': -0.15,
|
517 |
-
'Small': 0.10,
|
518 |
-
'Medium': 0.15,
|
519 |
-
'Large': 0.10,
|
520 |
-
'Giant': -0.30
|
521 |
-
}
|
522 |
-
else: # house
|
523 |
-
size_scores = {
|
524 |
-
'Tiny': -0.10,
|
525 |
-
'Small': 0.05,
|
526 |
-
'Medium': 0.15,
|
527 |
-
'Large': 0.15,
|
528 |
-
'Giant': -0.15
|
529 |
-
}
|
530 |
-
return size_scores.get(size, 0.0)
|
531 |
-
except Exception as e:
|
532 |
-
print(f"Error in calculate_size_bonus: {str(e)}")
|
533 |
-
return 0.0
|
534 |
-
|
535 |
-
def _calculate_exercise_bonus(self, exercise_needs: str, exercise_time: int) -> float:
|
536 |
-
"""
|
537 |
-
計算運動需求匹配的獎勵分數
|
538 |
-
|
539 |
-
Args:
|
540 |
-
exercise_needs: 品種運動需求
|
541 |
-
exercise_time: 用戶可提供的運動時間(分鐘)
|
542 |
-
|
543 |
-
Returns:
|
544 |
-
float: 獎勵分數 (-0.20 到 0.20)
|
545 |
-
"""
|
546 |
-
try:
|
547 |
-
if exercise_time >= 120: # 高運動量需求
|
548 |
-
exercise_scores = {
|
549 |
-
'Low': -0.30,
|
550 |
-
'Moderate': -0.10,
|
551 |
-
'High': 0.15,
|
552 |
-
'Very High': 0.30
|
553 |
-
}
|
554 |
-
elif exercise_time >= 60: # 中等運動量需求
|
555 |
-
exercise_scores = {
|
556 |
-
'Low': -0.05,
|
557 |
-
'Moderate': 0.15,
|
558 |
-
'High': 0.05,
|
559 |
-
'Very High': -0.10
|
560 |
-
}
|
561 |
-
else: # 低運動量需求
|
562 |
-
exercise_scores = {
|
563 |
-
'Low': 0.15,
|
564 |
-
'Moderate': 0.05,
|
565 |
-
'High': -0.15,
|
566 |
-
'Very High': -0.20
|
567 |
-
}
|
568 |
-
return exercise_scores.get(exercise_needs, 0.0)
|
569 |
-
except Exception as e:
|
570 |
-
print(f"Error in calculate_exercise_bonus: {str(e)}")
|
571 |
-
return 0.0
|
572 |
-
|
573 |
-
def _calculate_grooming_bonus(self, grooming: str, commitment: str) -> float:
|
574 |
-
"""
|
575 |
-
計算美容需求匹配的獎勵分數
|
576 |
-
|
577 |
-
Args:
|
578 |
-
grooming: 品種美容需求
|
579 |
-
commitment: 用戶美容投入程度
|
580 |
-
|
581 |
-
Returns:
|
582 |
-
float: 獎勵分數 (-0.15 到 0.10)
|
583 |
-
"""
|
584 |
-
try:
|
585 |
-
if commitment == "high":
|
586 |
-
grooming_scores = {
|
587 |
-
'Low': -0.05,
|
588 |
-
'Moderate': 0.05,
|
589 |
-
'High': 0.10
|
590 |
-
}
|
591 |
-
else: # medium or low commitment
|
592 |
-
grooming_scores = {
|
593 |
-
'Low': 0.10,
|
594 |
-
'Moderate': 0.05,
|
595 |
-
'High': -0.20
|
596 |
-
}
|
597 |
-
return grooming_scores.get(grooming, 0.0)
|
598 |
-
except Exception as e:
|
599 |
-
print(f"Error in calculate_grooming_bonus: {str(e)}")
|
600 |
-
return 0.0
|
601 |
-
|
602 |
-
def _calculate_family_bonus(self, breed_info: Dict) -> float:
|
603 |
-
"""
|
604 |
-
計算家庭適應性的獎勵分數
|
605 |
-
|
606 |
-
Args:
|
607 |
-
breed_info: 品種信息字典
|
608 |
-
|
609 |
-
Returns:
|
610 |
-
float: 獎勵分數 (0 到 0.20)
|
611 |
-
"""
|
612 |
-
try:
|
613 |
-
bonus = 0.0
|
614 |
-
temperament = breed_info.get('Temperament', '').lower()
|
615 |
-
good_with_children = breed_info.get('Good_With_Children', False)
|
616 |
-
|
617 |
-
if good_with_children:
|
618 |
-
bonus += 0.20
|
619 |
-
if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']):
|
620 |
-
bonus += 0.10
|
621 |
-
|
622 |
-
return min(0.20, bonus)
|
623 |
-
except Exception as e:
|
624 |
-
print(f"Error in calculate_family_bonus: {str(e)}")
|
625 |
-
return 0.0
|
626 |
-
|
627 |
-
|
628 |
-
def _detect_scenario(self, description: str) -> Dict[str, float]:
|
629 |
-
"""
|
630 |
-
檢測場景並返回對應權重
|
631 |
-
"""
|
632 |
-
# 基礎場景定義
|
633 |
-
scenarios = {
|
634 |
-
'athletic': {
|
635 |
-
'keywords': ['active', 'exercise', 'running', 'athletic', 'energetic', 'sports'],
|
636 |
-
'weights': {
|
637 |
-
'exercise': 0.40,
|
638 |
-
'size': 0.25,
|
639 |
-
'temperament': 0.20,
|
640 |
-
'health': 0.15
|
641 |
-
}
|
642 |
-
},
|
643 |
-
'apartment': {
|
644 |
-
'keywords': ['apartment', 'flat', 'condo'],
|
645 |
-
'weights': {
|
646 |
-
'size': 0.35,
|
647 |
-
'noise': 0.30,
|
648 |
-
'exercise': 0.20,
|
649 |
-
'temperament': 0.15
|
650 |
-
}
|
651 |
-
},
|
652 |
-
'family': {
|
653 |
-
'keywords': ['family', 'children', 'kids', 'friendly'],
|
654 |
-
'weights': {
|
655 |
-
'temperament': 0.35,
|
656 |
-
'safety': 0.30,
|
657 |
-
'noise': 0.20,
|
658 |
-
'exercise': 0.15
|
659 |
-
}
|
660 |
-
},
|
661 |
-
'novice': {
|
662 |
-
'keywords': ['first time', 'beginner', 'new owner', 'inexperienced'],
|
663 |
-
'weights': {
|
664 |
-
'trainability': 0.35,
|
665 |
-
'temperament': 0.30,
|
666 |
-
'care_level': 0.20,
|
667 |
-
'health': 0.15
|
668 |
-
}
|
669 |
-
}
|
670 |
-
}
|
671 |
-
|
672 |
-
# 檢測匹配的場景
|
673 |
-
matched_scenarios = []
|
674 |
-
for scenario, config in scenarios.items():
|
675 |
-
if any(keyword in description.lower() for keyword in config['keywords']):
|
676 |
-
matched_scenarios.append(scenario)
|
677 |
-
|
678 |
-
# 默認權重
|
679 |
-
default_weights = {
|
680 |
-
'exercise': 0.20,
|
681 |
-
'size': 0.20,
|
682 |
-
'temperament': 0.20,
|
683 |
-
'health': 0.15,
|
684 |
-
'noise': 0.10,
|
685 |
-
'grooming': 0.10,
|
686 |
-
'trainability': 0.05
|
687 |
-
}
|
688 |
-
|
689 |
-
# 如果沒有匹配場景,返回默認權重
|
690 |
-
if not matched_scenarios:
|
691 |
-
return default_weights
|
692 |
-
|
693 |
-
# 合併匹配場景的權重
|
694 |
-
final_weights = default_weights.copy()
|
695 |
-
for scenario in matched_scenarios:
|
696 |
-
scenario_weights = scenarios[scenario]['weights']
|
697 |
-
for feature, weight in scenario_weights.items():
|
698 |
-
if feature in final_weights:
|
699 |
-
final_weights[feature] = max(final_weights[feature], weight)
|
700 |
-
|
701 |
-
return final_weights
|
702 |
-
|
703 |
-
|
704 |
-
def _calculate_final_scores(self, breed_name: str, base_scores: Dict,
|
705 |
-
smart_score: float, is_preferred: bool,
|
706 |
-
similarity_score: float = 0.0,
|
707 |
-
characteristics_score: float = 1.0,
|
708 |
-
weights: Dict[str, float] = None) -> Dict:
|
709 |
-
try:
|
710 |
-
# 使用傳入的權重或默認權重
|
711 |
-
if weights is None:
|
712 |
-
weights = {
|
713 |
-
'base': 0.35,
|
714 |
-
'smart': 0.35,
|
715 |
-
'bonus': 0.15,
|
716 |
-
'characteristics': 0.15
|
717 |
-
}
|
718 |
-
|
719 |
-
# 確保 base_scores 包含所有必要的鍵
|
720 |
-
base_scores = {
|
721 |
-
'overall': base_scores.get('overall', smart_score),
|
722 |
-
'size': base_scores.get('size', 0.0),
|
723 |
-
'exercise': base_scores.get('exercise', 0.0),
|
724 |
-
'temperament': base_scores.get('temperament', 0.0),
|
725 |
-
'grooming': base_scores.get('grooming', 0.0),
|
726 |
-
'health': base_scores.get('health', 0.0),
|
727 |
-
'noise': base_scores.get('noise', 0.0)
|
728 |
-
}
|
729 |
-
|
730 |
-
# 計算基礎分數
|
731 |
-
base_score = base_scores['overall']
|
732 |
-
|
733 |
-
# 計算獎勵分數
|
734 |
-
bonus_score = 0.0
|
735 |
-
if is_preferred:
|
736 |
-
bonus_score = 0.95
|
737 |
-
elif similarity_score > 0:
|
738 |
-
bonus_score = min(0.8, similarity_score) * 0.95
|
739 |
-
|
740 |
-
# 特徵匹配度調整
|
741 |
-
if characteristics_score < 0.5:
|
742 |
-
base_score *= 0.7 # 降低基礎分數
|
743 |
-
smart_score *= 0.7 # 降低智能匹配分數
|
744 |
-
|
745 |
-
# 計算最終分數
|
746 |
-
final_score = (
|
747 |
-
base_score * weights.get('base', 0.35) +
|
748 |
-
smart_score * weights.get('smart', 0.35) +
|
749 |
-
bonus_score * weights.get('bonus', 0.15) +
|
750 |
-
characteristics_score * weights.get('characteristics', 0.15)
|
751 |
-
)
|
752 |
-
|
753 |
-
# 確保分數在合理範圍內
|
754 |
-
final_score = min(1.0, max(0.3, final_score))
|
755 |
-
|
756 |
-
return {
|
757 |
-
'final_score': round(final_score, 4),
|
758 |
-
'base_score': round(base_score, 4),
|
759 |
-
'smart_score': round(smart_score, 4),
|
760 |
-
'bonus_score': round(bonus_score, 4),
|
761 |
-
'characteristics_score': round(characteristics_score, 4),
|
762 |
-
'detailed_scores': base_scores
|
763 |
-
}
|
764 |
-
|
765 |
-
except Exception as e:
|
766 |
-
print(f"Error in calculate_final_scores: {str(e)}")
|
767 |
-
return {
|
768 |
-
'final_score': 0.5,
|
769 |
-
'base_score': 0.5,
|
770 |
-
'smart_score': 0.5,
|
771 |
-
'bonus_score': 0.0,
|
772 |
-
'characteristics_score': 0.5,
|
773 |
-
'detailed_scores': {
|
774 |
-
'overall': 0.5,
|
775 |
-
'size': 0.5,
|
776 |
-
'exercise': 0.5,
|
777 |
-
'temperament': 0.5,
|
778 |
-
'grooming': 0.5,
|
779 |
-
'health': 0.5,
|
780 |
-
'noise': 0.5
|
781 |
-
}
|
782 |
-
}
|
783 |
-
|
784 |
-
def _general_matching(self, description: str, weights: Dict[str, float], top_n: int = 10) -> List[Dict]:
|
785 |
-
"""基本的品種匹配邏輯,考慮描述、性格、噪音和健康因素"""
|
786 |
-
try:
|
787 |
-
matches = []
|
788 |
-
desc_embedding = self._get_cached_embedding(description)
|
789 |
-
|
790 |
-
for breed in self.dog_data:
|
791 |
-
breed_name = breed[1]
|
792 |
-
breed_features = self._extract_breed_features(breed)
|
793 |
-
breed_description = breed[9]
|
794 |
-
temperament = breed[4]
|
795 |
-
|
796 |
-
breed_desc_embedding = self._get_cached_embedding(breed_description)
|
797 |
-
breed_temp_embedding = self._get_cached_embedding(temperament)
|
798 |
-
|
799 |
-
desc_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_desc_embedding))
|
800 |
-
temp_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_temp_embedding))
|
801 |
-
|
802 |
-
noise_similarity = self._calculate_noise_similarity(breed_name, breed_name)
|
803 |
-
health_score = self._calculate_health_score(breed_name)
|
804 |
-
health_similarity = 1.0 - abs(health_score - 0.8)
|
805 |
-
|
806 |
-
# 使用傳入的權重
|
807 |
-
final_score = (
|
808 |
-
desc_similarity * weights.get('description', 0.35) +
|
809 |
-
temp_similarity * weights.get('temperament', 0.25) +
|
810 |
-
noise_similarity * weights.get('noise', 0.2) +
|
811 |
-
health_similarity * weights.get('health', 0.2)
|
812 |
-
)
|
813 |
-
|
814 |
-
# 計算特徵分數
|
815 |
-
characteristics_score = self.get_breed_characteristics_score(breed_features, description)
|
816 |
-
|
817 |
-
# 構建完整的 scores 字典
|
818 |
-
scores = {
|
819 |
-
'overall': final_score,
|
820 |
-
'size': breed_features.get('size_score', 0.0),
|
821 |
-
'exercise': breed_features.get('exercise_score', 0.0),
|
822 |
-
'temperament': temp_similarity,
|
823 |
-
'grooming': breed_features.get('grooming_score', 0.0),
|
824 |
-
'health': health_score,
|
825 |
-
'noise': noise_similarity
|
826 |
-
}
|
827 |
-
|
828 |
-
matches.append({
|
829 |
-
'breed': breed_name,
|
830 |
-
'scores': scores,
|
831 |
-
'final_score': final_score,
|
832 |
-
'base_score': final_score,
|
833 |
-
'characteristics_score': characteristics_score,
|
834 |
-
'bonus_score': 0.0,
|
835 |
-
'is_preferred': False,
|
836 |
-
'similarity': final_score,
|
837 |
-
'health_score': health_score,
|
838 |
-
'reason': "Matched based on description and characteristics"
|
839 |
-
})
|
840 |
-
|
841 |
-
return sorted(matches, key=lambda x: (-x['characteristics_score'], -x['final_score']))[:top_n]
|
842 |
-
|
843 |
-
except Exception as e:
|
844 |
-
print(f"Error in _general_matching: {str(e)}")
|
845 |
-
return []
|
846 |
-
|
847 |
-
|
848 |
-
def _detect_breed_preference(self, description: str) -> Optional[str]:
|
849 |
-
"""檢測用戶是否提到特定品種"""
|
850 |
-
description_lower = f" {description.lower()} "
|
851 |
-
|
852 |
-
for breed_info in self.dog_data:
|
853 |
-
breed_name = breed_info[1]
|
854 |
-
normalized_breed = breed_name.lower().replace('_', ' ')
|
855 |
-
|
856 |
-
pattern = rf"\b{re.escape(normalized_breed)}\b"
|
857 |
-
|
858 |
-
if re.search(pattern, description_lower):
|
859 |
-
return breed_name
|
860 |
-
|
861 |
-
return None
|
862 |
-
|
863 |
-
def _extract_breed_features(self, breed_info: Tuple) -> Dict:
|
864 |
-
"""
|
865 |
-
從品種信息中提取特徵
|
866 |
-
|
867 |
-
Args:
|
868 |
-
breed_info: 品種信息元組
|
869 |
-
|
870 |
-
Returns:
|
871 |
-
Dict: 包含品種特徵的字典
|
872 |
-
"""
|
873 |
-
try:
|
874 |
-
return {
|
875 |
-
'breed_name': breed_info[1],
|
876 |
-
'size': breed_info[2],
|
877 |
-
'temperament': breed_info[4],
|
878 |
-
'exercise': breed_info[7],
|
879 |
-
'grooming': breed_info[8],
|
880 |
-
'description': breed_info[9],
|
881 |
-
'good_with_children': breed_info[6]
|
882 |
-
}
|
883 |
-
except Exception as e:
|
884 |
-
print(f"Error in extract_breed_features: {str(e)}")
|
885 |
-
return {
|
886 |
-
'breed_name': '',
|
887 |
-
'size': 'Medium',
|
888 |
-
'temperament': '',
|
889 |
-
'exercise': 'Moderate',
|
890 |
-
'grooming': 'Moderate',
|
891 |
-
'description': '',
|
892 |
-
'good_with_children': False
|
893 |
-
}
|
894 |
-
|
895 |
-
@gpu_init_wrapper
|
896 |
-
@safe_prediction
|
897 |
-
def match_user_preference(self, description: str, top_n: int = 10) -> List[Dict]:
|
898 |
-
try:
|
899 |
-
if self.model is None:
|
900 |
-
self._initialize_model()
|
901 |
-
# 獲取場景權重
|
902 |
-
weights = self._detect_scenario(description)
|
903 |
-
matches = []
|
904 |
-
preferred_breed = self._detect_breed_preference(description)
|
905 |
-
|
906 |
-
# 處理用戶明確提到的品種
|
907 |
-
if preferred_breed:
|
908 |
-
breed_info = next((breed for breed in self.dog_data if breed[1] == preferred_breed), None)
|
909 |
-
if breed_info:
|
910 |
-
breed_features = self._extract_breed_features(breed_info)
|
911 |
-
base_similarity = self._calculate_breed_similarity(breed_features, breed_features, weights)
|
912 |
-
|
913 |
-
# 計算特徵分數
|
914 |
-
characteristics_score = self.get_breed_characteristics_score(breed_features, description)
|
915 |
-
|
916 |
-
# 計算最終分數
|
917 |
-
scores = self._calculate_final_scores(
|
918 |
-
preferred_breed,
|
919 |
-
{'overall': base_similarity},
|
920 |
-
smart_score=base_similarity,
|
921 |
-
is_preferred=True,
|
922 |
-
similarity_score=1.0,
|
923 |
-
characteristics_score=characteristics_score,
|
924 |
-
weights=weights
|
925 |
-
)
|
926 |
-
|
927 |
-
matches.append({
|
928 |
-
'breed': preferred_breed,
|
929 |
-
'scores': scores['detailed_scores'],
|
930 |
-
'final_score': scores['final_score'],
|
931 |
-
'base_score': scores['base_score'],
|
932 |
-
'bonus_score': scores['bonus_score'],
|
933 |
-
'characteristics_score': characteristics_score,
|
934 |
-
'is_preferred': True,
|
935 |
-
'priority': 1,
|
936 |
-
'health_score': self._calculate_health_score(preferred_breed),
|
937 |
-
'reason': "Directly matched your preferred breed"
|
938 |
-
})
|
939 |
-
|
940 |
-
# 尋找相似品種
|
941 |
-
similar_breeds = self.find_similar_breeds(preferred_breed, top_n=top_n-1)
|
942 |
-
for breed_name, similarity in similar_breeds:
|
943 |
-
if breed_name != preferred_breed:
|
944 |
-
breed_info = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
|
945 |
-
if breed_info:
|
946 |
-
breed_features = self._extract_breed_features(breed_info)
|
947 |
-
characteristics_score = self.get_breed_characteristics_score(breed_features, description)
|
948 |
-
|
949 |
-
scores = self._calculate_final_scores(
|
950 |
-
breed_name,
|
951 |
-
{'overall': similarity},
|
952 |
-
smart_score=similarity,
|
953 |
-
is_preferred=False,
|
954 |
-
similarity_score=similarity,
|
955 |
-
characteristics_score=characteristics_score,
|
956 |
-
weights=weights
|
957 |
-
)
|
958 |
-
|
959 |
-
if scores['final_score'] >= 0.4: # 設定最低分數門檻
|
960 |
-
matches.append({
|
961 |
-
'breed': breed_name,
|
962 |
-
'scores': scores['detailed_scores'],
|
963 |
-
'final_score': scores['final_score'],
|
964 |
-
'base_score': scores['base_score'],
|
965 |
-
'bonus_score': scores['bonus_score'],
|
966 |
-
'characteristics_score': characteristics_score,
|
967 |
-
'is_preferred': False,
|
968 |
-
'priority': 2,
|
969 |
-
'health_score': self._calculate_health_score(breed_name),
|
970 |
-
'reason': f"Similar to {preferred_breed}"
|
971 |
-
})
|
972 |
-
|
973 |
-
# 如果沒有找到偏好品種或需要更多匹配
|
974 |
-
if len(matches) < top_n:
|
975 |
-
general_matches = self._general_matching(description, weights, top_n - len(matches))
|
976 |
-
for match in general_matches:
|
977 |
-
if match['breed'] not in [m['breed'] for m in matches]:
|
978 |
-
match['priority'] = 3
|
979 |
-
if match['final_score'] >= 0.4: # 分數門檻
|
980 |
-
matches.append(match)
|
981 |
-
|
982 |
-
# 最終排序
|
983 |
-
matches.sort(key=lambda x: (
|
984 |
-
-x.get('characteristics_score', 0), # 首先考慮特徵匹配度
|
985 |
-
-x.get('final_score', 0), # 然後是總分
|
986 |
-
-x.get('base_score', 0), # 最後是基礎分數
|
987 |
-
x.get('breed', '') # 字母順序
|
988 |
-
))
|
989 |
-
|
990 |
-
# 取前N個結果
|
991 |
-
final_matches = matches[:top_n]
|
992 |
-
|
993 |
-
# 更新排名
|
994 |
-
for i, match in enumerate(final_matches, 1):
|
995 |
-
match['rank'] = i
|
996 |
-
|
997 |
-
return final_matches
|
998 |
-
|
999 |
-
except Exception as e:
|
1000 |
-
print(f"Error in match_user_preference: {str(e)}")
|
1001 |
-
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|